Cargando…

Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART

In order to design strategies for eradication of HIV-1 from infected individuals, detailed insight into the HIV-1 reservoirs that persist in patients on suppressive antiretroviral therapy (ART) is required. In this regard, most studies have focused on integrated (proviral) HIV-1 DNA forms in cells c...

Descripción completa

Detalles Bibliográficos
Autores principales: Buzón, Maria J., Codoñer, Francisco M., Frost, Simon D. W., Pou, Christian, Puertas, Maria C., Massanella, Marta, Dalmau, Judith, Llibre, Josep M., Stevenson, Mario, Blanco, Julià, Clotet, Bonaventura, Paredes, Roger, Martinez-Picado, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203183/
https://www.ncbi.nlm.nih.gov/pubmed/22046128
http://dx.doi.org/10.1371/journal.ppat.1002314
_version_ 1782215086772846592
author Buzón, Maria J.
Codoñer, Francisco M.
Frost, Simon D. W.
Pou, Christian
Puertas, Maria C.
Massanella, Marta
Dalmau, Judith
Llibre, Josep M.
Stevenson, Mario
Blanco, Julià
Clotet, Bonaventura
Paredes, Roger
Martinez-Picado, Javier
author_facet Buzón, Maria J.
Codoñer, Francisco M.
Frost, Simon D. W.
Pou, Christian
Puertas, Maria C.
Massanella, Marta
Dalmau, Judith
Llibre, Josep M.
Stevenson, Mario
Blanco, Julià
Clotet, Bonaventura
Paredes, Roger
Martinez-Picado, Javier
author_sort Buzón, Maria J.
collection PubMed
description In order to design strategies for eradication of HIV-1 from infected individuals, detailed insight into the HIV-1 reservoirs that persist in patients on suppressive antiretroviral therapy (ART) is required. In this regard, most studies have focused on integrated (proviral) HIV-1 DNA forms in cells circulating in blood. However, the majority of proviral DNA is replication-defective and archival, and as such, has limited ability to reveal the dynamics of the viral population that persists in patients on suppressive ART. In contrast, extrachromosomal (episomal) viral DNA is labile and as a consequence is a better surrogate for recent infection events and is able to inform on the extent to which residual replication contributes to viral reservoir maintenance. To gain insight into the diversity and compartmentalization of HIV-1 under suppressive ART, we extensively analyzed longitudinal peripheral blood mononuclear cells (PBMC) samples by deep sequencing of episomal and integrated HIV-1 DNA from patients undergoing raltegravir intensification. Reverse-transcriptase genes selectively amplified from episomal and proviral HIV-1 DNA were analyzed by deep sequencing 0, 2, 4, 12, 24 and 48 weeks after raltegravir intensification. We used maximum likelihood phylogenies and statistical tests (AMOVA and Slatkin-Maddison (SM)) in order to determine molecular compartmentalization. We observed low molecular variance (mean variability ≤0.042). Although phylogenies showed that both DNA forms were intermingled within the phylogenetic tree, we found a statistically significant compartmentalization between episomal and proviral DNA samples (P<10(−6) AMOVA test; P = 0.001 SM test), suggesting that they belong to different viral populations. In addition, longitudinal analysis of episomal and proviral DNA by phylogeny and AMOVA showed signs of non-chronological temporal compartmentalization (all comparisons P<10(−6)) suggesting that episomal and proviral DNA forms originated from different anatomical compartments. Collectively, this suggests the presence of a chronic viral reservoir in which there is stochastic release of infectious virus and in which there are limited rounds of de novo infection. This could be explained by the existence of different reservoirs with unique pharmacological accessibility properties, which will require strategies that improve drug penetration/retention within these reservoirs in order to minimise maintenance of the viral reservoir by de novo infection.
format Online
Article
Text
id pubmed-3203183
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32031832011-11-01 Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART Buzón, Maria J. Codoñer, Francisco M. Frost, Simon D. W. Pou, Christian Puertas, Maria C. Massanella, Marta Dalmau, Judith Llibre, Josep M. Stevenson, Mario Blanco, Julià Clotet, Bonaventura Paredes, Roger Martinez-Picado, Javier PLoS Pathog Research Article In order to design strategies for eradication of HIV-1 from infected individuals, detailed insight into the HIV-1 reservoirs that persist in patients on suppressive antiretroviral therapy (ART) is required. In this regard, most studies have focused on integrated (proviral) HIV-1 DNA forms in cells circulating in blood. However, the majority of proviral DNA is replication-defective and archival, and as such, has limited ability to reveal the dynamics of the viral population that persists in patients on suppressive ART. In contrast, extrachromosomal (episomal) viral DNA is labile and as a consequence is a better surrogate for recent infection events and is able to inform on the extent to which residual replication contributes to viral reservoir maintenance. To gain insight into the diversity and compartmentalization of HIV-1 under suppressive ART, we extensively analyzed longitudinal peripheral blood mononuclear cells (PBMC) samples by deep sequencing of episomal and integrated HIV-1 DNA from patients undergoing raltegravir intensification. Reverse-transcriptase genes selectively amplified from episomal and proviral HIV-1 DNA were analyzed by deep sequencing 0, 2, 4, 12, 24 and 48 weeks after raltegravir intensification. We used maximum likelihood phylogenies and statistical tests (AMOVA and Slatkin-Maddison (SM)) in order to determine molecular compartmentalization. We observed low molecular variance (mean variability ≤0.042). Although phylogenies showed that both DNA forms were intermingled within the phylogenetic tree, we found a statistically significant compartmentalization between episomal and proviral DNA samples (P<10(−6) AMOVA test; P = 0.001 SM test), suggesting that they belong to different viral populations. In addition, longitudinal analysis of episomal and proviral DNA by phylogeny and AMOVA showed signs of non-chronological temporal compartmentalization (all comparisons P<10(−6)) suggesting that episomal and proviral DNA forms originated from different anatomical compartments. Collectively, this suggests the presence of a chronic viral reservoir in which there is stochastic release of infectious virus and in which there are limited rounds of de novo infection. This could be explained by the existence of different reservoirs with unique pharmacological accessibility properties, which will require strategies that improve drug penetration/retention within these reservoirs in order to minimise maintenance of the viral reservoir by de novo infection. Public Library of Science 2011-10-27 /pmc/articles/PMC3203183/ /pubmed/22046128 http://dx.doi.org/10.1371/journal.ppat.1002314 Text en Buzón et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Buzón, Maria J.
Codoñer, Francisco M.
Frost, Simon D. W.
Pou, Christian
Puertas, Maria C.
Massanella, Marta
Dalmau, Judith
Llibre, Josep M.
Stevenson, Mario
Blanco, Julià
Clotet, Bonaventura
Paredes, Roger
Martinez-Picado, Javier
Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title_full Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title_fullStr Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title_full_unstemmed Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title_short Deep Molecular Characterization of HIV-1 Dynamics under Suppressive HAART
title_sort deep molecular characterization of hiv-1 dynamics under suppressive haart
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203183/
https://www.ncbi.nlm.nih.gov/pubmed/22046128
http://dx.doi.org/10.1371/journal.ppat.1002314
work_keys_str_mv AT buzonmariaj deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT codonerfranciscom deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT frostsimondw deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT pouchristian deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT puertasmariac deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT massanellamarta deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT dalmaujudith deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT llibrejosepm deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT stevensonmario deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT blancojulia deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT clotetbonaventura deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT paredesroger deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart
AT martinezpicadojavier deepmolecularcharacterizationofhiv1dynamicsundersuppressivehaart