Cargando…
How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis
BACKGROUND: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturall...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203333/ https://www.ncbi.nlm.nih.gov/pubmed/21943248 http://dx.doi.org/10.1186/1754-6834-4-33 |
_version_ | 1782215107720249344 |
---|---|
author | Jäger, Gernot Girfoglio, Michele Dollo, Florian Rinaldi, Roberto Bongard, Hans Commandeur, Ulrich Fischer, Rainer Spiess, Antje C Büchs, Jochen |
author_facet | Jäger, Gernot Girfoglio, Michele Dollo, Florian Rinaldi, Roberto Bongard, Hans Commandeur, Ulrich Fischer, Rainer Spiess, Antje C Büchs, Jochen |
author_sort | Jäger, Gernot |
collection | PubMed |
description | BACKGROUND: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS: After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS: Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis. |
format | Online Article Text |
id | pubmed-3203333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32033332011-10-31 How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis Jäger, Gernot Girfoglio, Michele Dollo, Florian Rinaldi, Roberto Bongard, Hans Commandeur, Ulrich Fischer, Rainer Spiess, Antje C Büchs, Jochen Biotechnol Biofuels Research BACKGROUND: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS: After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS: Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis. BioMed Central 2011-09-23 /pmc/articles/PMC3203333/ /pubmed/21943248 http://dx.doi.org/10.1186/1754-6834-4-33 Text en Copyright © 2011 Jäger et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Jäger, Gernot Girfoglio, Michele Dollo, Florian Rinaldi, Roberto Bongard, Hans Commandeur, Ulrich Fischer, Rainer Spiess, Antje C Büchs, Jochen How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis |
title | How recombinant swollenin from Kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
title_full | How recombinant swollenin from Kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
title_fullStr | How recombinant swollenin from Kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
title_full_unstemmed | How recombinant swollenin from Kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
title_short | How recombinant swollenin from Kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
title_sort | how recombinant swollenin from kluyveromyces lactis affects cellulosic
substrates and accelerates their hydrolysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203333/ https://www.ncbi.nlm.nih.gov/pubmed/21943248 http://dx.doi.org/10.1186/1754-6834-4-33 |
work_keys_str_mv | AT jagergernot howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT girfogliomichele howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT dolloflorian howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT rinaldiroberto howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT bongardhans howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT commandeurulrich howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT fischerrainer howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT spiessantjec howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis AT buchsjochen howrecombinantswolleninfromkluyveromyceslactisaffectscellulosicsubstratesandacceleratestheirhydrolysis |