Cargando…
Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data
ABSTRACT: BACKGROUND: The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relat...
Autores principales: | Kong, Wei, Mou, Xiaoyang, Hu, Xiaohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203370/ https://www.ncbi.nlm.nih.gov/pubmed/21989140 http://dx.doi.org/10.1186/1471-2105-12-S5-S7 |
Ejemplares similares
-
Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
por: Kim, Mi Hyeon, et al.
Publicado: (2011) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007) -
Biclustering of microarray data with MOSPO based on crowding distance
por: Liu, Junwan, et al.
Publicado: (2009) -
Modeling the interactions of Alzheimer-related genes from the whole brain microarray data and diffusion tensor images of human brain
por: Park, Byungkyu, et al.
Publicado: (2012) -
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
por: Costa, Ivan G, et al.
Publicado: (2007)