Cargando…

Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes

Despite technical advances, the future of chromatin mapping studies requires an ability to draw accurate comparisons between different chromatin states to enhance our understanding of genome biology. In this study, we used matched chromatin preparations to enable specific and accurate comparisons of...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzo, Jason M., Mieczkowski, Piotr A., Buck, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203618/
https://www.ncbi.nlm.nih.gov/pubmed/21785133
http://dx.doi.org/10.1093/nar/gkr557
Descripción
Sumario:Despite technical advances, the future of chromatin mapping studies requires an ability to draw accurate comparisons between different chromatin states to enhance our understanding of genome biology. In this study, we used matched chromatin preparations to enable specific and accurate comparisons of Saccharomyces cerevisiae chromatin structures in the presence and absence of the co-repressor protein Tup1. Analysis of wild-type and tup1 Δ chromatin data sets revealed unique organizational themes relating to the function of Tup1. Regulatory regions bound by Tup1 assumed a distinct chromatin architecture composed of a wide nucleosome-depleted region, low occupancy/poorly positioned promoter nucleosomes, a larger number and wider distribution of transcription factor-binding sites and downstream genes with enhanced transcription plasticity. Regions of Tup1-dependent chromatin structure were defined for the first time across the entire yeast genome and are shown to strongly overlap with activity of the chromatin remodeler Isw2. Additionally, Tup1-dependent chromatin structures are shown to relate to distinct biological processes and transcriptional states of regulated genes, including Tup1 stabilization of Minus 1 and Minus 2 promoter nucleosomes at actively repressed genes. Together these results help to enhance our mechanistic understanding of Tup1 regulation of chromatin structure and gene expression.