Cargando…
The Pot1a-associated proteins Tpt1 and Pat1 coordinate telomere protection and length regulation in Tetrahymena
We have identified two new telomere proteins, Tpt1 and Pat1, from the ciliate Tetrahymena thermophila. Although Tetrahymena telomerase is well characterized, only one telomere protein had previously been identified. This was the G-overhang binding-protein Pot1a. Tpt1 and Pat1 were isolated as Pot1a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204076/ https://www.ncbi.nlm.nih.gov/pubmed/21900503 http://dx.doi.org/10.1091/mbc.E11-06-0551 |
Sumario: | We have identified two new telomere proteins, Tpt1 and Pat1, from the ciliate Tetrahymena thermophila. Although Tetrahymena telomerase is well characterized, only one telomere protein had previously been identified. This was the G-overhang binding-protein Pot1a. Tpt1 and Pat1 were isolated as Pot1a binding partners and shown to localize to telomeres. As Tpt1 and Pat1 were both found to be essential, conditional cell lines were generated to explore their function. Tpt1 depletion caused a rapid growth arrest and telomere elongation in the absence of cell division. The phenotype was similar to that seen after Pot1a depletion suggesting that Tpt1 and Pot1a function together to regulate telomere length and prevent telomere deprotection. In contrast, Pat1 depletion had a modest effect on cell growth but caused progressive telomere shortening similar to that observed upon TERT depletion. Thus Pat1 appears to be needed for telomerase to maintain the chromosome terminus. Analysis of Pot1a-Tpt1-Pat1 complex formation using purified proteins indicated that Tpt1 interacts directly with Pot1a while Pat1 interacts with Tpt1. Our results indicate that Tpt1 is the Tetrahymena equivalent of mammalian TPP1, Schizosaccharomyces pombe Tpz1, and Oxytricha nova TEBPβ. |
---|