Cargando…

The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system

The aim of the present study was to identify the signaling mechanism(s) responsible for the modulation of growth hormone secretagogue receptor type 1a (GHSR1a)-associated Akt activity. Ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Lodeiro, Maria, Alén, Begoña O., Mosteiro, Carlos S., Beiroa, Daniel, Nogueiras, Rubén, Theodoropoulou, Marily, Pardo, María, Gallego, Rosalía, Pazos, Yolanda, Casanueva, Felipe F., Camiña, Jesus P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204078/
https://www.ncbi.nlm.nih.gov/pubmed/21900501
http://dx.doi.org/10.1091/mbc.E11-04-0373
Descripción
Sumario:The aim of the present study was to identify the signaling mechanism(s) responsible for the modulation of growth hormone secretagogue receptor type 1a (GHSR1a)-associated Akt activity. Ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) protein-dependent pathway and a late pathway mediated by β-arrestins. We found that the Src homology 2–containing protein tyrosine phosphatase (SHP-1) was an essential molecule in both G(i/o) protein–dependent and β-arrestin–mediated pathways. More specifically, the role of SHP-1 in the G(i/o) protein–dependent pathway was demonstrated by the fact that the overexpression of a catalytically defective SHP-1 augments tyrosine phosphorylation of the PI3K regulatory subunit p85, leading to an increase in the phosphorylation of cSrc and phosphoinositide-dependent protein kinase 1, and finally activating Akt. The presence of SHP-1 in the β-arrestin–scaffolded complex and its attenuating effect on the cSrc and Akt activities verified that SHP-1 regulates not only the G(i/o) protein–dependent pathway but also the β-arrestin–mediated pathway. Assays performed in preadipocyte and adipocyte 3T3-L1 cells showed SHP-1 expression. According to our results in HEK-GHSR1a cells, ghrelin stimulated SHP-1 phosphorylation in 3T3-L1 cells. The increase in ghrelin-induced Akt activity was enhanced by small interfering RNA of SHP-1 in preadipocyte 3T3-L1 cells. These results were reproduced in white adipose tissue obtained from mice, in which SHP-1 exhibited higher expression in omental than in subcutaneous tissue. Furthermore, this pattern of expression was inverted in mice fed a high-fat diet, suggesting a role for SHP-1 in controlling ghrelin sensitivity in adipose tissue. Indeed, SHP-1 deficiency was associated with augmented ghrelin-evoked Akt phosphorylation in omental tissue, as well as decreased phosphorylation under overexpression of SHP-1 in subcutaneous tissue. These findings showed a novel role for SHP-1 in the regulation of Akt activity through the modulation of the ghrelin/GHSR1a system signaling.