Cargando…
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping
BACKGROUND: Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate...
Autores principales: | Hampton, Kristen H, Serre, Marc L, Gesink, Dionne C, Pilcher, Christopher D, Miller, William C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204220/ https://www.ncbi.nlm.nih.gov/pubmed/21978359 http://dx.doi.org/10.1186/1476-072X-10-54 |
Ejemplares similares
-
Geostatistical COVID-19 infection risk maps for Portugal
por: Azevedo, Leonardo, et al.
Publicado: (2020) -
Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging
por: Goovaerts, Pierre
Publicado: (2006) -
Dealing with spatial misalignment to model the relationship between deprivation and life expectancy: a model-based geostatistical approach
por: Johnson, Olatunji, et al.
Publicado: (2020) -
Progression of a large syphilis outbreak in rural North Carolina through space and time: Application of a Bayesian Maximum Entropy graphical user interface
por: Fox, Lani C., et al.
Publicado: (2023) -
Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging
por: Goovaerts, Pierre
Publicado: (2005)