Cargando…

Clathrin-mediated entry and cellular localization of chlorotoxin in human glioma

BACKGROUND: Chlorotoxin (TM601), a scorpion venom- derived 36-AA peptide, is an experimental drug against recurrent glioma with tumor specificity but unknown route of intracellular distribution. The aim of this study was to evaluate the route of entry and cellular localization of TM601 in glioma cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiranowska, Marzenna, Colina, Lucrecia O, Johnson, Joseph O
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204276/
https://www.ncbi.nlm.nih.gov/pubmed/21838899
http://dx.doi.org/10.1186/1475-2867-11-27
Descripción
Sumario:BACKGROUND: Chlorotoxin (TM601), a scorpion venom- derived 36-AA peptide, is an experimental drug against recurrent glioma with tumor specificity but unknown route of intracellular distribution. The aim of this study was to evaluate the route of entry and cellular localization of TM601 in glioma cells. RESULTS: We have found that in human gliomas, lung carcinoma and normal vascular endothelial cells, TM601 localizes near trans-Golgi while in normal human dermal fibroblasts (NHDF) and astrocytes it is dispersed in the cytoplasm. The uptake of TM601 by U373 glioma cells is rapid, concentration and time dependent, not affected by inhibitors such as filipin (caveolae-dependent endocytosis) and amiloride (non-selective macropinocytosis), but significantly affected by chlorpromazine (clathrin-dependent intracellular transport of coated pits) resulting in intracellular build-up of the drug and clathrin near the Golgi. In contrast, TM601 uptake by NHDF cells was significantly affected by amiloride indicating that macropinocytosis is the dominant uptake route of TM601 in these cells. CONCLUSIONS: In conclusion, we found a distinct cellular localization pattern and uptake of TM601 by glioma cells differing from that found in normal cells. Further insight into the cellular processing of TM601 should assist in the development of effective anti-glioma therapeutic modalities.