Cargando…
A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses
An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using...
Autores principales: | El-Laithy, Karim, Bogdan, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204373/ https://www.ncbi.nlm.nih.gov/pubmed/22046180 http://dx.doi.org/10.1155/2011/869348 |
Ejemplares similares
-
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
por: Covi, Erika, et al.
Publicado: (2016) -
Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses
por: Wang, Wei, et al.
Publicado: (2018) -
Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons
por: Frémaux, Nicolas, et al.
Publicado: (2013) -
Evaluation of the Effect of the Dynamic Behavior and Topology Co-Learning of Neurons and Synapses on the Small-Sample Learning Ability of Spiking Neural Network
por: Yang, Xu, et al.
Publicado: (2022) -
Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
por: Nandakumar, S. R., et al.
Publicado: (2020)