Cargando…
Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon
The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204406/ https://www.ncbi.nlm.nih.gov/pubmed/22043173 |
_version_ | 1782215206650249216 |
---|---|
author | Liu, Yi-Fei Qi, Hong-Yan Bai, Chun-Ming Qi, Ming-Fang Xu, Chuan-Qiang Hao, Jing-Hong Li, Yan Li, Tian-Lai |
author_facet | Liu, Yi-Fei Qi, Hong-Yan Bai, Chun-Ming Qi, Ming-Fang Xu, Chuan-Qiang Hao, Jing-Hong Li, Yan Li, Tian-Lai |
author_sort | Liu, Yi-Fei |
collection | PubMed |
description | The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata) rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR) or Shengzhen1 (GS) rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK). Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO(2) and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose) in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves. |
format | Online Article Text |
id | pubmed-3204406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-32044062011-10-31 Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon Liu, Yi-Fei Qi, Hong-Yan Bai, Chun-Ming Qi, Ming-Fang Xu, Chuan-Qiang Hao, Jing-Hong Li, Yan Li, Tian-Lai Int J Biol Sci Research Paper The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata) rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR) or Shengzhen1 (GS) rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK). Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO(2) and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose) in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves. Ivyspring International Publisher 2011-10-19 /pmc/articles/PMC3204406/ /pubmed/22043173 Text en © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. |
spellingShingle | Research Paper Liu, Yi-Fei Qi, Hong-Yan Bai, Chun-Ming Qi, Ming-Fang Xu, Chuan-Qiang Hao, Jing-Hong Li, Yan Li, Tian-Lai Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title | Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title_full | Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title_fullStr | Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title_full_unstemmed | Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title_short | Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon |
title_sort | grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204406/ https://www.ncbi.nlm.nih.gov/pubmed/22043173 |
work_keys_str_mv | AT liuyifei graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT qihongyan graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT baichunming graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT qimingfang graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT xuchuanqiang graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT haojinghong graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT liyan graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon AT litianlai graftinghelpsimprovephotosynthesisandcarbohydratemetabolisminleavesofmuskmelon |