Cargando…

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

PURPOSE: Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS: Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Manish, Ozawa, Shogo, Masuda, Tatsuhiko, Yoshioka, Fumi, Tanaka, Yoshinobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Prosthodontics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204450/
https://www.ncbi.nlm.nih.gov/pubmed/22053245
http://dx.doi.org/10.4047/jap.2011.3.3.140
Descripción
Sumario:PURPOSE: Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS: Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS: When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION: Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.