Cargando…
NFAT promotes carcinoma invasive migration through glypican-6
Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulate...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204871/ https://www.ncbi.nlm.nih.gov/pubmed/21871017 http://dx.doi.org/10.1042/BJ20110530 |
_version_ | 1782215262522572800 |
---|---|
author | Yiu, Gary K. Kaunisto, Aura Chin, Y. Rebecca Toker, Alex |
author_facet | Yiu, Gary K. Kaunisto, Aura Chin, Y. Rebecca Toker, Alex |
author_sort | Yiu, Gary K. |
collection | PubMed |
description | Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the metastatic cascade. Recent studies have revealed that the NFAT (nuclear factor of activated T-cells) is a transcription factor that is highly expressed in aggressive breast cancer cells and tissues, and mediates invasion through transcriptional induction of pro-invasion and migration genes. In the present paper we demonstrate that NFAT promotes breast carcinoma invasion through induction of GPC (glypican) 6, a cell-surface glycoprotein. NFAT transcriptionally regulates GPC6 induction in breast cancer cells and binds to three regulatory elements in the GPC6 proximal promoter. Expression of GPC6 in response to NFAT signalling promotes invasive migration, whereas GPC6 silencing with shRNA (small-hairpin RNA) potently blocks this phenotype. The mechanism by which GPC6 promotes invasive migration involves inhibition of canonical β-catenin and Wnt signalling, and up-regulation of non-canonical Wnt5A signalling leading to the activation of JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Thus GPC6 is a novel NFAT target gene in breast cancer cells that promotes invasive migration through Wnt5A signalling. |
format | Online Article Text |
id | pubmed-3204871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-32048712011-11-07 NFAT promotes carcinoma invasive migration through glypican-6 Yiu, Gary K. Kaunisto, Aura Chin, Y. Rebecca Toker, Alex Biochem J Research Article Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the metastatic cascade. Recent studies have revealed that the NFAT (nuclear factor of activated T-cells) is a transcription factor that is highly expressed in aggressive breast cancer cells and tissues, and mediates invasion through transcriptional induction of pro-invasion and migration genes. In the present paper we demonstrate that NFAT promotes breast carcinoma invasion through induction of GPC (glypican) 6, a cell-surface glycoprotein. NFAT transcriptionally regulates GPC6 induction in breast cancer cells and binds to three regulatory elements in the GPC6 proximal promoter. Expression of GPC6 in response to NFAT signalling promotes invasive migration, whereas GPC6 silencing with shRNA (small-hairpin RNA) potently blocks this phenotype. The mechanism by which GPC6 promotes invasive migration involves inhibition of canonical β-catenin and Wnt signalling, and up-regulation of non-canonical Wnt5A signalling leading to the activation of JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Thus GPC6 is a novel NFAT target gene in breast cancer cells that promotes invasive migration through Wnt5A signalling. Portland Press Ltd. 2011-10-27 2011-11-15 /pmc/articles/PMC3204871/ /pubmed/21871017 http://dx.doi.org/10.1042/BJ20110530 Text en © 2011 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by-nc/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yiu, Gary K. Kaunisto, Aura Chin, Y. Rebecca Toker, Alex NFAT promotes carcinoma invasive migration through glypican-6 |
title | NFAT promotes carcinoma invasive migration through glypican-6 |
title_full | NFAT promotes carcinoma invasive migration through glypican-6 |
title_fullStr | NFAT promotes carcinoma invasive migration through glypican-6 |
title_full_unstemmed | NFAT promotes carcinoma invasive migration through glypican-6 |
title_short | NFAT promotes carcinoma invasive migration through glypican-6 |
title_sort | nfat promotes carcinoma invasive migration through glypican-6 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204871/ https://www.ncbi.nlm.nih.gov/pubmed/21871017 http://dx.doi.org/10.1042/BJ20110530 |
work_keys_str_mv | AT yiugaryk nfatpromotescarcinomainvasivemigrationthroughglypican6 AT kaunistoaura nfatpromotescarcinomainvasivemigrationthroughglypican6 AT chinyrebecca nfatpromotescarcinomainvasivemigrationthroughglypican6 AT tokeralex nfatpromotescarcinomainvasivemigrationthroughglypican6 |