Cargando…
Profiles and Majority Voting-Based Ensemble Method for Protein Secondary Structure Prediction
Machine learning techniques have been widely applied to solve the problem of predicting protein secondary structure from the amino acid sequence. They have gained substantial success in this research area. Many methods have been used including k-Nearest Neighbors (k-NNs), Hidden Markov Models (HMMs)...
Autores principales: | Bouziane, Hafida, Messabih, Belhadri, Chouarfia, Abdallah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204938/ https://www.ncbi.nlm.nih.gov/pubmed/22058650 http://dx.doi.org/10.4137/EBO.S7931 |
Ejemplares similares
-
Use of Chou’s 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment
por: Bouziane, Hafida, et al.
Publicado: (2020) -
Collaborative driving style classification method enabled by majority voting ensemble learning for enhancing classification performance
por: Guo, Yi, et al.
Publicado: (2021) -
Hybrid Majority Voting: Prediction and Classification Model for Obesity
por: Solomon, Dahlak Daniel, et al.
Publicado: (2023) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Osamor, Victor Chukwudi, et al.
Publicado: (2021) -
Genome Majority Vote Improves Gene Predictions
por: Wall, Michael E., et al.
Publicado: (2011)