Cargando…

Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

BACKGROUND: Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. METHODS: In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butan...

Descripción completa

Detalles Bibliográficos
Autores principales: Asefnejad, Azadeh, Khorasani, Mohammad Taghi, Behnamghader, Aliasghar, Farsadzadeh, Babak, Bonakdar, Shahin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205133/
https://www.ncbi.nlm.nih.gov/pubmed/22072874
http://dx.doi.org/10.2147/IJN.S15586
Descripción
Sumario:BACKGROUND: Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. METHODS: In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. RESULTS: Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 μm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. CONCLUSION: These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications.