Cargando…
l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry
Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between l-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205869/ https://www.ncbi.nlm.nih.gov/pubmed/21737418 http://dx.doi.org/10.1074/mcp.M111.009308 |
_version_ | 1782215373393756160 |
---|---|
author | Hanrieder, Jörg Ljungdahl, Anna Fälth, Maria Mammo, Sofie Eriksson Bergquist, Jonas Andersson, Malin |
author_facet | Hanrieder, Jörg Ljungdahl, Anna Fälth, Maria Mammo, Sofie Eriksson Bergquist, Jonas Andersson, Malin |
author_sort | Hanrieder, Jörg |
collection | PubMed |
description | Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between l-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1–8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198–209, 219–229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220–229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also μ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases. |
format | Online Article Text |
id | pubmed-3205869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-32058692011-11-14 l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry Hanrieder, Jörg Ljungdahl, Anna Fälth, Maria Mammo, Sofie Eriksson Bergquist, Jonas Andersson, Malin Mol Cell Proteomics Research Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between l-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1–8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198–209, 219–229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220–229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also μ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases. The American Society for Biochemistry and Molecular Biology 2011-10 2011-07-06 /pmc/articles/PMC3205869/ /pubmed/21737418 http://dx.doi.org/10.1074/mcp.M111.009308 Text en © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Research Hanrieder, Jörg Ljungdahl, Anna Fälth, Maria Mammo, Sofie Eriksson Bergquist, Jonas Andersson, Malin l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title | l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title_full | l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title_fullStr | l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title_full_unstemmed | l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title_short | l-DOPA-induced Dyskinesia is Associated with Regional Increase of Striatal Dynorphin Peptides as Elucidated by Imaging Mass Spectrometry |
title_sort | l-dopa-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205869/ https://www.ncbi.nlm.nih.gov/pubmed/21737418 http://dx.doi.org/10.1074/mcp.M111.009308 |
work_keys_str_mv | AT hanriederjorg ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry AT ljungdahlanna ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry AT falthmaria ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry AT mammosofieeriksson ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry AT bergquistjonas ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry AT anderssonmalin ldopainduceddyskinesiaisassociatedwithregionalincreaseofstriataldynorphinpeptidesaselucidatedbyimagingmassspectrometry |