Cargando…
Preclinical multimodality phantom design for quality assurance of tumor size measurement
BACKGROUND: Evaluation of changes in tumor size from images acquired by ultrasound (US), computed tomography (CT) or magnetic resonance imaging (MRI) is a common measure of cancer chemotherapy efficacy. Tumor size measurement based on either the World Health Organization (WHO) criteria or the Respon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206432/ https://www.ncbi.nlm.nih.gov/pubmed/21958653 http://dx.doi.org/10.1186/1756-6649-11-1 |
_version_ | 1782215434492182528 |
---|---|
author | Lee, Yongsook C Fullerton, Gary D Baiu, Cristel Lescrenier, Margaret G Goins, Beth A |
author_facet | Lee, Yongsook C Fullerton, Gary D Baiu, Cristel Lescrenier, Margaret G Goins, Beth A |
author_sort | Lee, Yongsook C |
collection | PubMed |
description | BACKGROUND: Evaluation of changes in tumor size from images acquired by ultrasound (US), computed tomography (CT) or magnetic resonance imaging (MRI) is a common measure of cancer chemotherapy efficacy. Tumor size measurement based on either the World Health Organization (WHO) criteria or the Response Evaluation Criteria in Solid Tumors (RECIST) is the only imaging biomarker for anti-cancer drug testing presently approved by the United States Food and Drug Administration (FDA). The aim of this paper was to design and test a quality assurance phantom with the capability of monitoring tumor size changes with multiple preclinical imaging scanners (US, CT and MRI) in order to facilitate preclinical anti-cancer drug testing. METHODS: Three phantoms (Gammex/UTHSCSA Mark 1, Gammex/UTHSCSA Mark 2 and UTHSCSA multimodality tumor measurement phantom) containing tumor-simulating test objects were designed and constructed. All three phantoms were scanned in US, CT and MRI devices. The size of test objects in the phantoms was measured from the US, CT and MRI images. RECIST, WHO and volume analyses were performed. RESULTS: The smaller phantom size, simplified design and better test object CT contrast of the UTHSCSA multimodality tumor measurement phantom allowed scanning of the phantom in preclinical US, CT and MRI scanners compared with only limited preclinical scanning capability of Mark 1 and Mark 2 phantoms. For all imaging modalities, RECIST and WHO errors were reduced for UTHSCSA multimodality tumor measurement phantom (≤1.69 ± 0.33%) compared with both Mark 1 (≤ -7.56 ± 6.52%) and Mark 2 (≤ 5.66 ± 1.41%) phantoms. For the UTHSCSA multimodality tumor measurement phantom, measured tumor volumes were highly correlated with NIST traceable design volumes for US (R(2 )= 1.000, p < 0.0001), CT (R(2 )= 0.9999, p < 0.0001) and MRI (R(2 )= 0.9998, p < 0.0001). CONCLUSIONS: The UTHSCSA multimodality tumor measurement phantom described in this study can potentially be a useful quality assurance tool for verifying radiologic assessment of tumor size change during preclinical anti-cancer therapy testing with multiple imaging modalities. |
format | Online Article Text |
id | pubmed-3206432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32064322011-11-03 Preclinical multimodality phantom design for quality assurance of tumor size measurement Lee, Yongsook C Fullerton, Gary D Baiu, Cristel Lescrenier, Margaret G Goins, Beth A BMC Med Phys Technical Advance BACKGROUND: Evaluation of changes in tumor size from images acquired by ultrasound (US), computed tomography (CT) or magnetic resonance imaging (MRI) is a common measure of cancer chemotherapy efficacy. Tumor size measurement based on either the World Health Organization (WHO) criteria or the Response Evaluation Criteria in Solid Tumors (RECIST) is the only imaging biomarker for anti-cancer drug testing presently approved by the United States Food and Drug Administration (FDA). The aim of this paper was to design and test a quality assurance phantom with the capability of monitoring tumor size changes with multiple preclinical imaging scanners (US, CT and MRI) in order to facilitate preclinical anti-cancer drug testing. METHODS: Three phantoms (Gammex/UTHSCSA Mark 1, Gammex/UTHSCSA Mark 2 and UTHSCSA multimodality tumor measurement phantom) containing tumor-simulating test objects were designed and constructed. All three phantoms were scanned in US, CT and MRI devices. The size of test objects in the phantoms was measured from the US, CT and MRI images. RECIST, WHO and volume analyses were performed. RESULTS: The smaller phantom size, simplified design and better test object CT contrast of the UTHSCSA multimodality tumor measurement phantom allowed scanning of the phantom in preclinical US, CT and MRI scanners compared with only limited preclinical scanning capability of Mark 1 and Mark 2 phantoms. For all imaging modalities, RECIST and WHO errors were reduced for UTHSCSA multimodality tumor measurement phantom (≤1.69 ± 0.33%) compared with both Mark 1 (≤ -7.56 ± 6.52%) and Mark 2 (≤ 5.66 ± 1.41%) phantoms. For the UTHSCSA multimodality tumor measurement phantom, measured tumor volumes were highly correlated with NIST traceable design volumes for US (R(2 )= 1.000, p < 0.0001), CT (R(2 )= 0.9999, p < 0.0001) and MRI (R(2 )= 0.9998, p < 0.0001). CONCLUSIONS: The UTHSCSA multimodality tumor measurement phantom described in this study can potentially be a useful quality assurance tool for verifying radiologic assessment of tumor size change during preclinical anti-cancer therapy testing with multiple imaging modalities. BioMed Central 2011-09-30 /pmc/articles/PMC3206432/ /pubmed/21958653 http://dx.doi.org/10.1186/1756-6649-11-1 Text en Copyright ©2011 Lee et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Advance Lee, Yongsook C Fullerton, Gary D Baiu, Cristel Lescrenier, Margaret G Goins, Beth A Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title | Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title_full | Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title_fullStr | Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title_full_unstemmed | Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title_short | Preclinical multimodality phantom design for quality assurance of tumor size measurement |
title_sort | preclinical multimodality phantom design for quality assurance of tumor size measurement |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206432/ https://www.ncbi.nlm.nih.gov/pubmed/21958653 http://dx.doi.org/10.1186/1756-6649-11-1 |
work_keys_str_mv | AT leeyongsookc preclinicalmultimodalityphantomdesignforqualityassuranceoftumorsizemeasurement AT fullertongaryd preclinicalmultimodalityphantomdesignforqualityassuranceoftumorsizemeasurement AT baiucristel preclinicalmultimodalityphantomdesignforqualityassuranceoftumorsizemeasurement AT lescreniermargaretg preclinicalmultimodalityphantomdesignforqualityassuranceoftumorsizemeasurement AT goinsbetha preclinicalmultimodalityphantomdesignforqualityassuranceoftumorsizemeasurement |