Cargando…
Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images
Medical imaging provides information valuable in diagnosis, planning, and control of therapies. In this paper, we develop a method that uses a specific type of imaging—the magnetic resonance thermometry—to identify accurate and computationally efficient site and patient-specific computer models for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206840/ https://www.ncbi.nlm.nih.gov/pubmed/22073204 http://dx.doi.org/10.1371/journal.pone.0026830 |
_version_ | 1782215492688150528 |
---|---|
author | Niu, Ran Skliar, Mikhail |
author_facet | Niu, Ran Skliar, Mikhail |
author_sort | Niu, Ran |
collection | PubMed |
description | Medical imaging provides information valuable in diagnosis, planning, and control of therapies. In this paper, we develop a method that uses a specific type of imaging—the magnetic resonance thermometry—to identify accurate and computationally efficient site and patient-specific computer models for thermal therapies, such as focused ultrasound surgery, hyperthermia, and thermally triggered targeted drug delivery. The developed method uses a sequence of acquired MR thermometry images to identify a treatment model describing the deposition and dissipation of thermal energy in tissues. The proper orthogonal decomposition of thermal images is first used to identify a set of empirical eigenfunctions, which captures spatial correlations in the thermal response of tissues. Using the reduced subset of eigenfunction as a functional basis, low-dimensional thermal response and the ultrasound specific absorption rate models are then identified. Once identified, the treatment models can be used to plan, optimize, and control the treatment. The developed approach is validated experimentally using the results of MR thermal imaging of a tissue phantom during focused ultrasound sonication. The validation demonstrates that our approach produces accurate low-dimensional treatment models and provides a convenient tool for balancing the accuracy of model predictions and the computational complexity of the treatment models. |
format | Online Article Text |
id | pubmed-3206840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32068402011-11-09 Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images Niu, Ran Skliar, Mikhail PLoS One Research Article Medical imaging provides information valuable in diagnosis, planning, and control of therapies. In this paper, we develop a method that uses a specific type of imaging—the magnetic resonance thermometry—to identify accurate and computationally efficient site and patient-specific computer models for thermal therapies, such as focused ultrasound surgery, hyperthermia, and thermally triggered targeted drug delivery. The developed method uses a sequence of acquired MR thermometry images to identify a treatment model describing the deposition and dissipation of thermal energy in tissues. The proper orthogonal decomposition of thermal images is first used to identify a set of empirical eigenfunctions, which captures spatial correlations in the thermal response of tissues. Using the reduced subset of eigenfunction as a functional basis, low-dimensional thermal response and the ultrasound specific absorption rate models are then identified. Once identified, the treatment models can be used to plan, optimize, and control the treatment. The developed approach is validated experimentally using the results of MR thermal imaging of a tissue phantom during focused ultrasound sonication. The validation demonstrates that our approach produces accurate low-dimensional treatment models and provides a convenient tool for balancing the accuracy of model predictions and the computational complexity of the treatment models. Public Library of Science 2011-11-02 /pmc/articles/PMC3206840/ /pubmed/22073204 http://dx.doi.org/10.1371/journal.pone.0026830 Text en Niu, Skliar. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Niu, Ran Skliar, Mikhail Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title | Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title_full | Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title_fullStr | Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title_full_unstemmed | Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title_short | Identification of Controlled-Complexity Thermal Therapy Models Derived from Magnetic Resonance Thermometry Images |
title_sort | identification of controlled-complexity thermal therapy models derived from magnetic resonance thermometry images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206840/ https://www.ncbi.nlm.nih.gov/pubmed/22073204 http://dx.doi.org/10.1371/journal.pone.0026830 |
work_keys_str_mv | AT niuran identificationofcontrolledcomplexitythermaltherapymodelsderivedfrommagneticresonancethermometryimages AT skliarmikhail identificationofcontrolledcomplexitythermaltherapymodelsderivedfrommagneticresonancethermometryimages |