Cargando…
NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data
Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new “omics”-based approaches towards the analysis of complex biological processes. However, the amount and complexity of...
Autores principales: | Andreatta, Massimo, Schafer-Nielsen, Claus, Lund, Ole, Buus, Søren, Nielsen, Morten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206854/ https://www.ncbi.nlm.nih.gov/pubmed/22073191 http://dx.doi.org/10.1371/journal.pone.0026781 |
Ejemplares similares
-
NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions
por: Alvarez, Bruno, et al.
Publicado: (2019) -
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
por: Nielsen, Morten, et al.
Publicado: (2017) -
NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11
por: Lundegaard, Claus, et al.
Publicado: (2008) -
NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure
por: Nielsen, Morten, et al.
Publicado: (2010) -
Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction
por: Larsen, Mette V, et al.
Publicado: (2007)