Cargando…
Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease
Niemann-Pick type C2 (NPC2) disease is a fatal autosomal recessive neurovisceral degenerative disorder characterized by late endosomal-lysosomal sequestration of low-density lipoprotein derived cholesterol. The breach in intracellular cholesterol homeostasis is caused by deficiency of functional NPC...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207855/ https://www.ncbi.nlm.nih.gov/pubmed/22073306 http://dx.doi.org/10.1371/journal.pone.0027287 |
_version_ | 1782215562752950272 |
---|---|
author | Nielsen, Gitte Krogh Dagnaes-Hansen, Frederik Holm, Ida Elisabeth Meaney, Steve Symula, Derek Andersen, Niels Trolle Heegaard, Christian Würtz |
author_facet | Nielsen, Gitte Krogh Dagnaes-Hansen, Frederik Holm, Ida Elisabeth Meaney, Steve Symula, Derek Andersen, Niels Trolle Heegaard, Christian Würtz |
author_sort | Nielsen, Gitte Krogh |
collection | PubMed |
description | Niemann-Pick type C2 (NPC2) disease is a fatal autosomal recessive neurovisceral degenerative disorder characterized by late endosomal-lysosomal sequestration of low-density lipoprotein derived cholesterol. The breach in intracellular cholesterol homeostasis is caused by deficiency of functional NPC2, a soluble sterol binding protein targeted to the lysosomes by binding the mannose-6-phosphate receptor. As currently there is no effective treatment for the disorder, we have investigated the efficacy of NPC2 replacement therapy in a murine gene-trap model of NPC2-disease generated on the 129P2/OlaHsd genetic background. NPC2 was purified from bovine milk and its functional competence assured in NPC2-deficient fibroblasts using the specific cholesterol fluorescent probe filipin. For evaluation of phenotype correction in vivo, three-week-old NPC2 (−/−) mice received two weekly intravenous injections of 5 mg/kg NPC2 until trial termination 66 days later. Whereas the saline treated NPC2 (−/−) mice exhibited massive visceral cholesterol storage as compared to their wild-type littermates, administration of NPC2 caused a marked reduction in cholesterol build up. The histological findings, indicating an amelioration of the disease pathology in liver, spleen, and lungs, corroborated the biochemical results. Little or no difference in the overall cholesterol levels was observed in the kidneys, blood, cerebral cortex and hippocampus when comparing NPC2 (−/−) and wild type mice. However, cerebellum cholesterol was increased about two fold in NPC2 (−/−) mice compared with wild-type littermates. Weight gain performance was slightly improved as a result of the NPC2 treatment but significant motor coordination deficits were still observed. Accordingly, ultrastructural cerebellar abnormalities were detected in both saline treated and NPC2 treated NPC2 (−/−) animals 87 days post partum. Our data indicate that protein replacement may be a beneficial therapeutic approach in the treatment of the visceral manifestations in NPC2 disease and further suggest that neurodegeneration is not secondary to visceral dysfunction. |
format | Online Article Text |
id | pubmed-3207855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32078552011-11-09 Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease Nielsen, Gitte Krogh Dagnaes-Hansen, Frederik Holm, Ida Elisabeth Meaney, Steve Symula, Derek Andersen, Niels Trolle Heegaard, Christian Würtz PLoS One Research Article Niemann-Pick type C2 (NPC2) disease is a fatal autosomal recessive neurovisceral degenerative disorder characterized by late endosomal-lysosomal sequestration of low-density lipoprotein derived cholesterol. The breach in intracellular cholesterol homeostasis is caused by deficiency of functional NPC2, a soluble sterol binding protein targeted to the lysosomes by binding the mannose-6-phosphate receptor. As currently there is no effective treatment for the disorder, we have investigated the efficacy of NPC2 replacement therapy in a murine gene-trap model of NPC2-disease generated on the 129P2/OlaHsd genetic background. NPC2 was purified from bovine milk and its functional competence assured in NPC2-deficient fibroblasts using the specific cholesterol fluorescent probe filipin. For evaluation of phenotype correction in vivo, three-week-old NPC2 (−/−) mice received two weekly intravenous injections of 5 mg/kg NPC2 until trial termination 66 days later. Whereas the saline treated NPC2 (−/−) mice exhibited massive visceral cholesterol storage as compared to their wild-type littermates, administration of NPC2 caused a marked reduction in cholesterol build up. The histological findings, indicating an amelioration of the disease pathology in liver, spleen, and lungs, corroborated the biochemical results. Little or no difference in the overall cholesterol levels was observed in the kidneys, blood, cerebral cortex and hippocampus when comparing NPC2 (−/−) and wild type mice. However, cerebellum cholesterol was increased about two fold in NPC2 (−/−) mice compared with wild-type littermates. Weight gain performance was slightly improved as a result of the NPC2 treatment but significant motor coordination deficits were still observed. Accordingly, ultrastructural cerebellar abnormalities were detected in both saline treated and NPC2 treated NPC2 (−/−) animals 87 days post partum. Our data indicate that protein replacement may be a beneficial therapeutic approach in the treatment of the visceral manifestations in NPC2 disease and further suggest that neurodegeneration is not secondary to visceral dysfunction. Public Library of Science 2011-11-03 /pmc/articles/PMC3207855/ /pubmed/22073306 http://dx.doi.org/10.1371/journal.pone.0027287 Text en Nielsen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Nielsen, Gitte Krogh Dagnaes-Hansen, Frederik Holm, Ida Elisabeth Meaney, Steve Symula, Derek Andersen, Niels Trolle Heegaard, Christian Würtz Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title | Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title_full | Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title_fullStr | Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title_full_unstemmed | Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title_short | Protein Replacement Therapy Partially Corrects the Cholesterol-Storage Phenotype in a Mouse Model of Niemann-Pick Type C2 Disease |
title_sort | protein replacement therapy partially corrects the cholesterol-storage phenotype in a mouse model of niemann-pick type c2 disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207855/ https://www.ncbi.nlm.nih.gov/pubmed/22073306 http://dx.doi.org/10.1371/journal.pone.0027287 |
work_keys_str_mv | AT nielsengittekrogh proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT dagnaeshansenfrederik proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT holmidaelisabeth proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT meaneysteve proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT symuladerek proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT andersennielstrolle proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease AT heegaardchristianwurtz proteinreplacementtherapypartiallycorrectsthecholesterolstoragephenotypeinamousemodelofniemannpicktypec2disease |