Cargando…
Occupancy Classification of Position Weight Matrix-Inferred Transcription Factor Binding Sites
BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS) from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin...
Autores principales: | Wright, Hollis, Cohen, Aaron, Sönmez, Kemal, Yochum, Gregory, McWeeney, Shannon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208542/ https://www.ncbi.nlm.nih.gov/pubmed/22073148 http://dx.doi.org/10.1371/journal.pone.0026160 |
Ejemplares similares
-
Localization of TFIIB binding regions using serial analysis of chromatin occupancy
por: Yochum, Gregory S, et al.
Publicado: (2007) -
Identification of β-catenin binding regions in colon cancer cells using ChIP-Seq
por: Bottomly, Daniel, et al.
Publicado: (2010) -
A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome
por: Goodrum, Felicia, et al.
Publicado: (2018) -
Assessment of Algorithms for Inferring Positional Weight Matrix Motifs of Transcription Factor Binding Sites Using Protein Binding Microarray Data
por: Orenstein, Yaron, et al.
Publicado: (2012) -
plethy: management of whole body plethysmography data in R
por: Bottomly, Daniel, et al.
Publicado: (2015)