Cargando…
A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces
Selecting suitable feature types is crucial to obtain good overall brain–computer interface performance. Popular feature types include logarithmic band power (logBP), autoregressive (AR) parameters, time-domain parameters, and wavelet-based methods. In this study, we focused on different variants of...
Autores principales: | Brunner, Clemens, Billinger, Martin, Vidaurre, Carmen, Neuper, Christa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208819/ https://www.ncbi.nlm.nih.gov/pubmed/21947797 http://dx.doi.org/10.1007/s11517-011-0828-x |
Ejemplares similares
-
Bilinear Control Systems
por: Elliott, David
Publicado: (2009) -
Bilinear transformation method
por: Matsuno, Yoshimasa
Publicado: (1984) -
Symmetric bilinear forms
por: Milnor, John, et al.
Publicado: (1973) -
Finger vein recognition based on bilinear fusion of multiscale features
por: Ma, Bin, et al.
Publicado: (2023) -
On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research
por: Wood, Guilherme, et al.
Publicado: (2014)