Cargando…

A Map of Copy Number Variations in Chinese Populations

It has been shown that the human genome contains extensive copy number variations (CNVs). Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Haiyi, Li, Shilin, Yang, Yajun, Kang, Longli, Zhang, Xin, Jin, Wenfei, Wu, Bailin, Jin, Li, Xu, Shuhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210162/
https://www.ncbi.nlm.nih.gov/pubmed/22087296
http://dx.doi.org/10.1371/journal.pone.0027341
Descripción
Sumario:It has been shown that the human genome contains extensive copy number variations (CNVs). Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ∼35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%), which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a useful resource in further evolutionary and medical studies.