Cargando…

Precious Essences: Female Secretions Promote Sperm Storage in Drosophila

Sperm that females receive during mating are stored in special places in the females' reproductive tracts. These storage sites serve to support and retain the sperm, maintaining the sperms' motility and, in mammals, permitting final sperm-maturation. The molecules that attract sperm to the...

Descripción completa

Detalles Bibliográficos
Autor principal: Wolfner, Mariana F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210743/
https://www.ncbi.nlm.nih.gov/pubmed/22087072
http://dx.doi.org/10.1371/journal.pbio.1001191
Descripción
Sumario:Sperm that females receive during mating are stored in special places in the females' reproductive tracts. These storage sites serve to support and retain the sperm, maintaining the sperms' motility and, in mammals, permitting final sperm-maturation. The molecules that attract sperm to these sites and mediate what happens to them there have remained elusive. New research, using elegant genetic tools in Drosophila, shows that secretory cells associated with a sperm storage organ are important in sperm-supportive functions. When females lack function of these cells, they do not store sperm, or the sperm that they do store lose motility. Intriguingly, these effects influence gametes beyond the secretory cells' immediate vicinity. Loss of these cells eliminates the motility of sperm stored elsewhere in the reproductive tract and prevents the movement of eggs through the tract to exit the female. As a result of the latter problem, fertilized eggs hatch inside female flies that lack these secretory cells: instead of laying eggs, these females can “give birth” to live offspring. Because the cellular source of these gamete-regulating substances is now known, future studies can identify the specific molecules and mechanisms by which a female attracts sperm into storage and regulates the movement of sperm and eggs within her reproductive tract. It will be fascinating to determine how these molecules and mechanisms maintain gametes in active and viable forms and how evolution can modulate this to result in diverse reproductive strategies. Identification of these molecules also has potential practical implications for strategies to regulate the reproduction of insects of medical or agricultural importance.