Cargando…

A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters

Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and follo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rapoport, Daniel H., Becker, Tim, Madany Mamlouk, Amir, Schicktanz, Simone, Kruse, Charli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210784/
https://www.ncbi.nlm.nih.gov/pubmed/22087288
http://dx.doi.org/10.1371/journal.pone.0027315
_version_ 1782215763423133696
author Rapoport, Daniel H.
Becker, Tim
Madany Mamlouk, Amir
Schicktanz, Simone
Kruse, Charli
author_facet Rapoport, Daniel H.
Becker, Tim
Madany Mamlouk, Amir
Schicktanz, Simone
Kruse, Charli
author_sort Rapoport, Daniel H.
collection PubMed
description Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters with high reliability and statistical significance. These include the distribution of life/cycle times and cell areas, as well as of the symmetry of cell divisions and motion analyses. The new algorithm thus allows for the quantification and parameterization of cell culture with unprecedented accuracy. To evaluate our validation algorithm, two large reference data sets were manually created. These data sets comprise more than 320,000 unstained adult pancreatic stem cells from rat, including 2592 mitotic events. The reference data sets specify every cell position and shape, and assign each cell to the correct branch of its genealogic tree. We provide these reference data sets for free use by others as a benchmark for the future improvement of automated tracking methods.
format Online
Article
Text
id pubmed-3210784
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32107842011-11-15 A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters Rapoport, Daniel H. Becker, Tim Madany Mamlouk, Amir Schicktanz, Simone Kruse, Charli PLoS One Research Article Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters with high reliability and statistical significance. These include the distribution of life/cycle times and cell areas, as well as of the symmetry of cell divisions and motion analyses. The new algorithm thus allows for the quantification and parameterization of cell culture with unprecedented accuracy. To evaluate our validation algorithm, two large reference data sets were manually created. These data sets comprise more than 320,000 unstained adult pancreatic stem cells from rat, including 2592 mitotic events. The reference data sets specify every cell position and shape, and assign each cell to the correct branch of its genealogic tree. We provide these reference data sets for free use by others as a benchmark for the future improvement of automated tracking methods. Public Library of Science 2011-11-08 /pmc/articles/PMC3210784/ /pubmed/22087288 http://dx.doi.org/10.1371/journal.pone.0027315 Text en Rapoport et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Rapoport, Daniel H.
Becker, Tim
Madany Mamlouk, Amir
Schicktanz, Simone
Kruse, Charli
A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title_full A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title_fullStr A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title_full_unstemmed A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title_short A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters
title_sort novel validation algorithm allows for automated cell tracking and the extraction of biologically meaningful parameters
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210784/
https://www.ncbi.nlm.nih.gov/pubmed/22087288
http://dx.doi.org/10.1371/journal.pone.0027315
work_keys_str_mv AT rapoportdanielh anovelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT beckertim anovelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT madanymamloukamir anovelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT schicktanzsimone anovelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT krusecharli anovelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT rapoportdanielh novelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT beckertim novelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT madanymamloukamir novelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT schicktanzsimone novelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters
AT krusecharli novelvalidationalgorithmallowsforautomatedcelltrackingandtheextractionofbiologicallymeaningfulparameters