Cargando…

N-Acetylcysteine Reduces Markers of Differentiation in 3T3-L1 Adipocytes

Oxidative stress plays a critical role in the pathogenesis of diabetes, hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to systemic oxidative stress in humans and mice, but the relationship of lipid production and oxidative metabolism is still unclear. In our...

Descripción completa

Detalles Bibliográficos
Autores principales: Calzadilla, Pablo, Sapochnik, Daiana, Cosentino, Soledad, Diz, Virginia, Dicelio, Lelia, Calvo, Juan Carlos, Guerra, Liliana N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211019/
https://www.ncbi.nlm.nih.gov/pubmed/22072928
http://dx.doi.org/10.3390/ijms12106936
Descripción
Sumario:Oxidative stress plays a critical role in the pathogenesis of diabetes, hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to systemic oxidative stress in humans and mice, but the relationship of lipid production and oxidative metabolism is still unclear. In our laboratory we used 3T3-L1 preadipocytes, which are able to differentiate into mature adipocytes and accumulate lipids, as obesity model. We showed that intracellular reactive oxygen species (ROS) and antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased in parallel with fat accumulation. Meanwhile N-acetylcysteine (NAC), a well known antioxidant and Glutathione (GSH) precursor, inhibited ROS levels as well as fat accumulation in a concentration-dependent manner. NAC also inhibited both adipogenic transcription factors CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal proliferator activated receptor gamma (PPAR γ) expression; we suggested that intracellular GSH content could be responsible for these effects.