Cargando…

Optimal Production and Biochemical Properties of a Lipase from Candida albicans

Lipases from microorganisms have multi-faceted properties and play an important role in ever-growing modern biotechnology and, consequently, it is of great significance to develop new ones. In the present work, a lipase gene from Candida albicans (CaLIP10) was cloned and two non-unusual CUG serine c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Dongming, Hou, Shulin, Yang, Ning, Whiteley, Chris, Yang, Bo, Wang, Yonghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211034/
https://www.ncbi.nlm.nih.gov/pubmed/22072943
http://dx.doi.org/10.3390/ijms12107216
Descripción
Sumario:Lipases from microorganisms have multi-faceted properties and play an important role in ever-growing modern biotechnology and, consequently, it is of great significance to develop new ones. In the present work, a lipase gene from Candida albicans (CaLIP10) was cloned and two non-unusual CUG serine codons were mutated into universal codons, and its expression in Pichia pastoris performed optimally, as shown by response surface methodology. Optimal conditions were: initial pH of culture 6.86, temperature 25.53 °C, 3.48% of glucose and 1.32% of yeast extract. The corresponding maximal lipolytic activity of CaLIP10 was 8.06 U/mL. The purified CaLIP10 showed maximal activity at pH 8.0 and 25 °C, and a good resistance to non-ionic surfactants and polar organic solvent was noticed. CaLIP10 could effectively hydrolyze coconut oil, but exhibited no obvious preference to the fatty acids with different carbon length, and diacylglycerol was accumulated in the reaction products, suggesting that CaLIP10 is a potential lipase for the oil industry.