Cargando…

Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction

Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy(1) and two-dimensional (2D) electron crystallography(2) have become relati...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Xin, Zhao, Gongpu, Zhang, Peijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211131/
https://www.ncbi.nlm.nih.gov/pubmed/21860371
http://dx.doi.org/10.3791/3041
_version_ 1782215804293480448
author Meng, Xin
Zhao, Gongpu
Zhang, Peijun
author_facet Meng, Xin
Zhao, Gongpu
Zhang, Peijun
author_sort Meng, Xin
collection PubMed
description Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy(1) and two-dimensional (2D) electron crystallography(2) have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method(3), which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments(4), microtubules(5), amyloid fibers(6), tobacco mosaic viruses(7), and bacteria flagella(8), and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable. In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid(9) is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly.
format Online
Article
Text
id pubmed-3211131
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher MyJove Corporation
record_format MEDLINE/PubMed
spelling pubmed-32111312011-11-14 Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction Meng, Xin Zhao, Gongpu Zhang, Peijun J Vis Exp Immunology Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy(1) and two-dimensional (2D) electron crystallography(2) have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method(3), which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments(4), microtubules(5), amyloid fibers(6), tobacco mosaic viruses(7), and bacteria flagella(8), and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable. In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid(9) is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly. MyJove Corporation 2011-08-09 /pmc/articles/PMC3211131/ /pubmed/21860371 http://dx.doi.org/10.3791/3041 Text en Copyright © 2011, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Immunology
Meng, Xin
Zhao, Gongpu
Zhang, Peijun
Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title_full Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title_fullStr Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title_full_unstemmed Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title_short Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction
title_sort structure of hiv-1 capsid assemblies by cryo-electron microscopy and iterative helical real-space reconstruction
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211131/
https://www.ncbi.nlm.nih.gov/pubmed/21860371
http://dx.doi.org/10.3791/3041
work_keys_str_mv AT mengxin structureofhiv1capsidassembliesbycryoelectronmicroscopyanditerativehelicalrealspacereconstruction
AT zhaogongpu structureofhiv1capsidassembliesbycryoelectronmicroscopyanditerativehelicalrealspacereconstruction
AT zhangpeijun structureofhiv1capsidassembliesbycryoelectronmicroscopyanditerativehelicalrealspacereconstruction