Cargando…

Investigation of electrical and magnetic properties of ferro-nanofluid on transformers

This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chem...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Tsung-Han, Chen, Ping-Hei, Lee, Da-Sheng, Yang, Chin-Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211327/
https://www.ncbi.nlm.nih.gov/pubmed/21711784
http://dx.doi.org/10.1186/1556-276X-6-264
Descripción
Sumario:This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material.