Cargando…

Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy

The nanoscale electrical properties of single-layer graphene (SLG), bilayer graphene (BLG) and multilayer graphene (MLG) are studied by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM). The quantum capacitance of graphene deduced from SCM results is found to increase wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Shihua, Lv, Yi, Yang, Xinju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212013/
https://www.ncbi.nlm.nih.gov/pubmed/21851595
http://dx.doi.org/10.1186/1556-276X-6-498
Descripción
Sumario:The nanoscale electrical properties of single-layer graphene (SLG), bilayer graphene (BLG) and multilayer graphene (MLG) are studied by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM). The quantum capacitance of graphene deduced from SCM results is found to increase with the layer number (n) at the sample bias of 0 V but decreases with n at -3 V. Furthermore, the quantum capacitance increases very rapidly with the gate voltage for SLG, but this increase is much slowed down when n becomes greater. On the other hand, the magnitude of the EFM phase shift with respect to the SiO(2 )substrate increases with n at the sample bias of +2 V but decreases with n at -2 V. The difference in both quantum capacitance and EFM phase shift is significant between SLG and BLG but becomes much weaker between MLGs with a different n. The layer-dependent quantum capacitance behaviors of graphene could be attributed to their layer-dependent electronic structure as well as the layer-varied dependence on gate voltage, while the layer-dependent EFM phase shift is caused by not only the layer-dependent surface potential but also the layer-dependent capacitance derivation.