Cargando…
Determining factors of thermoelectric properties of semiconductor nanowires
It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212017/ https://www.ncbi.nlm.nih.gov/pubmed/21854613 http://dx.doi.org/10.1186/1556-276X-6-502 |
_version_ | 1782215905164394496 |
---|---|
author | Demchenko, Denis O Heinz, Peter D Lee, Byounghak |
author_facet | Demchenko, Denis O Heinz, Peter D Lee, Byounghak |
author_sort | Demchenko, Denis O |
collection | PubMed |
description | It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly parameter-free theory of the thermoelectric properties of semiconductor nanowires. By combining molecular dynamics, density functional theory, and Boltzmann transport theory methods, we provide a complete picture for the competing factors of thermoelectric figure of merit. As an example, we study the thermoelectric properties of ZnO and Si nanowires. We find that the figure of merit can be increased as much as 30 times in 8-Å-diameter ZnO nanowires and 20 times in 12-Å-diameter Si nanowires, compared with the bulk. Decoupling of thermoelectric contributions reveals that the reduction of lattice thermal conductivity is the predominant factor in the improvement of thermoelectric properties in nanowires. While the lattice contribution to the efficiency enhancement consistently becomes larger with decreasing size of nanowires, the electronic contribution is relatively small in ZnO and disadvantageous in Si. |
format | Online Article Text |
id | pubmed-3212017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-32120172011-11-09 Determining factors of thermoelectric properties of semiconductor nanowires Demchenko, Denis O Heinz, Peter D Lee, Byounghak Nanoscale Res Lett Nano Review It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly parameter-free theory of the thermoelectric properties of semiconductor nanowires. By combining molecular dynamics, density functional theory, and Boltzmann transport theory methods, we provide a complete picture for the competing factors of thermoelectric figure of merit. As an example, we study the thermoelectric properties of ZnO and Si nanowires. We find that the figure of merit can be increased as much as 30 times in 8-Å-diameter ZnO nanowires and 20 times in 12-Å-diameter Si nanowires, compared with the bulk. Decoupling of thermoelectric contributions reveals that the reduction of lattice thermal conductivity is the predominant factor in the improvement of thermoelectric properties in nanowires. While the lattice contribution to the efficiency enhancement consistently becomes larger with decreasing size of nanowires, the electronic contribution is relatively small in ZnO and disadvantageous in Si. Springer 2011-08-19 /pmc/articles/PMC3212017/ /pubmed/21854613 http://dx.doi.org/10.1186/1556-276X-6-502 Text en Copyright ©2011 Demchenko et al; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nano Review Demchenko, Denis O Heinz, Peter D Lee, Byounghak Determining factors of thermoelectric properties of semiconductor nanowires |
title | Determining factors of thermoelectric properties of semiconductor nanowires |
title_full | Determining factors of thermoelectric properties of semiconductor nanowires |
title_fullStr | Determining factors of thermoelectric properties of semiconductor nanowires |
title_full_unstemmed | Determining factors of thermoelectric properties of semiconductor nanowires |
title_short | Determining factors of thermoelectric properties of semiconductor nanowires |
title_sort | determining factors of thermoelectric properties of semiconductor nanowires |
topic | Nano Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212017/ https://www.ncbi.nlm.nih.gov/pubmed/21854613 http://dx.doi.org/10.1186/1556-276X-6-502 |
work_keys_str_mv | AT demchenkodeniso determiningfactorsofthermoelectricpropertiesofsemiconductornanowires AT heinzpeterd determiningfactorsofthermoelectricpropertiesofsemiconductornanowires AT leebyounghak determiningfactorsofthermoelectricpropertiesofsemiconductornanowires |