Cargando…

Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

BACKGROUND: The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Xiaoqian, Yang, Lifang, Xiao, Lanbo, Tang, Min, Liu, Liyu, Li, Zijian, Deng, Mengyao, Sun, Lunquan, Cao, Ya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212510/
https://www.ncbi.nlm.nih.gov/pubmed/22096476
http://dx.doi.org/10.1371/journal.pone.0024647
Descripción
Sumario:BACKGROUND: The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. RESULTS: In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. CONCLUSIONS: Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs.