Cargando…
Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella
BACKGROUND: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. RESULTS: In this study...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213010/ https://www.ncbi.nlm.nih.gov/pubmed/21711513 http://dx.doi.org/10.1186/1752-0509-5-100 |
_version_ | 1782216060423897088 |
---|---|
author | Yoon, Hyunjin Ansong, Charles McDermott, Jason E Gritsenko, Marina Smith, Richard D Heffron, Fred Adkins, Joshua N |
author_facet | Yoon, Hyunjin Ansong, Charles McDermott, Jason E Gritsenko, Marina Smith, Richard D Heffron, Fred Adkins, Joshua N |
author_sort | Yoon, Hyunjin |
collection | PubMed |
description | BACKGROUND: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. RESULTS: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. CONCLUSIONS: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens. |
format | Online Article Text |
id | pubmed-3213010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32130102011-11-11 Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella Yoon, Hyunjin Ansong, Charles McDermott, Jason E Gritsenko, Marina Smith, Richard D Heffron, Fred Adkins, Joshua N BMC Syst Biol Research Article BACKGROUND: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. RESULTS: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. CONCLUSIONS: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens. BioMed Central 2011-06-28 /pmc/articles/PMC3213010/ /pubmed/21711513 http://dx.doi.org/10.1186/1752-0509-5-100 Text en Copyright ©2011 Yoon et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yoon, Hyunjin Ansong, Charles McDermott, Jason E Gritsenko, Marina Smith, Richard D Heffron, Fred Adkins, Joshua N Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title | Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title_full | Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title_fullStr | Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title_full_unstemmed | Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title_short | Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella |
title_sort | systems analysis of multiple regulator perturbations allows discovery of virulence factors in salmonella |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213010/ https://www.ncbi.nlm.nih.gov/pubmed/21711513 http://dx.doi.org/10.1186/1752-0509-5-100 |
work_keys_str_mv | AT yoonhyunjin systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT ansongcharles systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT mcdermottjasone systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT gritsenkomarina systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT smithrichardd systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT heffronfred systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella AT adkinsjoshuan systemsanalysisofmultipleregulatorperturbationsallowsdiscoveryofvirulencefactorsinsalmonella |