Cargando…

Rapid Disruption of Cellular Integrity of Zinc-treated Astroglia Is Regulated by p38 MAPK and Ca(2+)-dependent Mechanisms

Cultured cortical primary astroglia treated with zinc died while rapidly detached from culture plates, a distinct part of zinc-treated astroglia. In the present study, we investigated the mechanism underlying the rapid change in the morphologic integrity of zinc-treated astroglia. Among the early ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Im, Joo-Young, Joo, Hyo-Jin, Han, Pyung-Lim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213738/
https://www.ncbi.nlm.nih.gov/pubmed/22110361
http://dx.doi.org/10.5607/en.2011.20.1.45
Descripción
Sumario:Cultured cortical primary astroglia treated with zinc died while rapidly detached from culture plates, a distinct part of zinc-treated astroglia. In the present study, we investigated the mechanism underlying the rapid change in the morphologic integrity of zinc-treated astroglia. Among the early cellular events occurring in zinc-treated astroglia, strong activation of p38 MAPK and JNK was evident. Although inhibitors of p38 (SB203580 and SB202190) or JNK (SP600125) did not protect zinc-insulted astroglia from cell death, the p38 inhibitors, but not the JNK inhibitor, suppressed actin filament and cell morphology disruption. The Ca(2+) ionophore, A23187, also suppressed actin filament and cell morphology disruption, but not cell death, of zinc-insulted astroglia. However, A23187 did not inhibit p38 MAPK activation in zinc-treated astroglia. Together these results suggest that zinc influx in astroglia results in rapid loss of the morphologic integrity via mechanisms regulated by p38 kinase and/or Ca(2+) signaling.