Cargando…

Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model

Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purin...

Descripción completa

Detalles Bibliográficos
Autores principales: Cassera, María B., Hazleton, Keith Z., Merino, Emilio F., Obaldia, Nicanor, Ho, Meng-Chiao, Murkin, Andrew S., DePinto, Richard, Gutierrez, Jemy A., Almo, Steven C., Evans, Gary B., Babu, Yarlagadda S., Schramm, Vern L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214022/
https://www.ncbi.nlm.nih.gov/pubmed/22096507
http://dx.doi.org/10.1371/journal.pone.0026916
_version_ 1782216189694443520
author Cassera, María B.
Hazleton, Keith Z.
Merino, Emilio F.
Obaldia, Nicanor
Ho, Meng-Chiao
Murkin, Andrew S.
DePinto, Richard
Gutierrez, Jemy A.
Almo, Steven C.
Evans, Gary B.
Babu, Yarlagadda S.
Schramm, Vern L.
author_facet Cassera, María B.
Hazleton, Keith Z.
Merino, Emilio F.
Obaldia, Nicanor
Ho, Meng-Chiao
Murkin, Andrew S.
DePinto, Richard
Gutierrez, Jemy A.
Almo, Steven C.
Evans, Gary B.
Babu, Yarlagadda S.
Schramm, Vern L.
author_sort Cassera, María B.
collection PubMed
description Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent.
format Online
Article
Text
id pubmed-3214022
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32140222011-11-17 Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model Cassera, María B. Hazleton, Keith Z. Merino, Emilio F. Obaldia, Nicanor Ho, Meng-Chiao Murkin, Andrew S. DePinto, Richard Gutierrez, Jemy A. Almo, Steven C. Evans, Gary B. Babu, Yarlagadda S. Schramm, Vern L. PLoS One Research Article Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent. Public Library of Science 2011-11-11 /pmc/articles/PMC3214022/ /pubmed/22096507 http://dx.doi.org/10.1371/journal.pone.0026916 Text en Cassera et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Cassera, María B.
Hazleton, Keith Z.
Merino, Emilio F.
Obaldia, Nicanor
Ho, Meng-Chiao
Murkin, Andrew S.
DePinto, Richard
Gutierrez, Jemy A.
Almo, Steven C.
Evans, Gary B.
Babu, Yarlagadda S.
Schramm, Vern L.
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title_full Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title_fullStr Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title_full_unstemmed Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title_short Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
title_sort plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214022/
https://www.ncbi.nlm.nih.gov/pubmed/22096507
http://dx.doi.org/10.1371/journal.pone.0026916
work_keys_str_mv AT casseramariab plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT hazletonkeithz plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT merinoemiliof plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT obaldianicanor plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT homengchiao plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT murkinandrews plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT depintorichard plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT gutierrezjemya plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT almostevenc plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT evansgaryb plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT babuyarlagaddas plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel
AT schrammvernl plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel