Cargando…
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model
Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214022/ https://www.ncbi.nlm.nih.gov/pubmed/22096507 http://dx.doi.org/10.1371/journal.pone.0026916 |
_version_ | 1782216189694443520 |
---|---|
author | Cassera, María B. Hazleton, Keith Z. Merino, Emilio F. Obaldia, Nicanor Ho, Meng-Chiao Murkin, Andrew S. DePinto, Richard Gutierrez, Jemy A. Almo, Steven C. Evans, Gary B. Babu, Yarlagadda S. Schramm, Vern L. |
author_facet | Cassera, María B. Hazleton, Keith Z. Merino, Emilio F. Obaldia, Nicanor Ho, Meng-Chiao Murkin, Andrew S. DePinto, Richard Gutierrez, Jemy A. Almo, Steven C. Evans, Gary B. Babu, Yarlagadda S. Schramm, Vern L. |
author_sort | Cassera, María B. |
collection | PubMed |
description | Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent. |
format | Online Article Text |
id | pubmed-3214022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32140222011-11-17 Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model Cassera, María B. Hazleton, Keith Z. Merino, Emilio F. Obaldia, Nicanor Ho, Meng-Chiao Murkin, Andrew S. DePinto, Richard Gutierrez, Jemy A. Almo, Steven C. Evans, Gary B. Babu, Yarlagadda S. Schramm, Vern L. PLoS One Research Article Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent. Public Library of Science 2011-11-11 /pmc/articles/PMC3214022/ /pubmed/22096507 http://dx.doi.org/10.1371/journal.pone.0026916 Text en Cassera et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cassera, María B. Hazleton, Keith Z. Merino, Emilio F. Obaldia, Nicanor Ho, Meng-Chiao Murkin, Andrew S. DePinto, Richard Gutierrez, Jemy A. Almo, Steven C. Evans, Gary B. Babu, Yarlagadda S. Schramm, Vern L. Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title |
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title_full |
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title_fullStr |
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title_full_unstemmed |
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title_short |
Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model |
title_sort | plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214022/ https://www.ncbi.nlm.nih.gov/pubmed/22096507 http://dx.doi.org/10.1371/journal.pone.0026916 |
work_keys_str_mv | AT casseramariab plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT hazletonkeithz plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT merinoemiliof plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT obaldianicanor plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT homengchiao plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT murkinandrews plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT depintorichard plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT gutierrezjemya plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT almostevenc plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT evansgaryb plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT babuyarlagaddas plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel AT schrammvernl plasmodiumfalciparumparasitesarekilledbyatransitionstateanalogueofpurinenucleosidephosphorylaseinaprimateanimalmodel |