Cargando…

Protective Role of Ashwagandha Leaf Extract and Its Component Withanone on Scopolamine-Induced Changes in the Brain and Brain-Derived Cells

BACKGROUND: Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Al...

Descripción completa

Detalles Bibliográficos
Autores principales: Konar, Arpita, Shah, Navjot, Singh, Rumani, Saxena, Nishant, Kaul, Sunil C., Wadhwa, Renu, Thakur, Mahendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214041/
https://www.ncbi.nlm.nih.gov/pubmed/22096544
http://dx.doi.org/10.1371/journal.pone.0027265
Descripción
Sumario:BACKGROUND: Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Although this has been linked to the decrease in central cholinergic neuronal activity following the blockade of muscarinic receptors, the underlying molecular and cellular mechanism(s) particularly the effect on neuroplasticity remains elusive. In the present study, we have investigated (i) the effects of scopolamine on the molecules involved in neuronal and glial plasticity both in vivo and in vitro and (ii) their recovery by alcoholic extract of Ashwagandha leaves (i-Extract). METHODOLOGY/PRINCIPAL FINDINGS: As a drug model, scopolamine hydrobromide was administered intraperitoneally to mice and its effect on the brain function was determined by molecular analyses. The results showed that the scopolamine caused downregulation of the expression of BDNF and GFAP in dose and time dependent manner, and these effects were markedly attenuated in response to i-Extract treatment. Similar to our observations in animal model system, we found that the scopolamine induced cytotoxicity in IMR32 neuronal and C6 glioma cells. It was associated with downregulation of neuronal cell markers NF-H, MAP2, PSD-95, GAP-43 and glial cell marker GFAP and with upregulation of DNA damage- γH2AX and oxidative stress- ROS markers. Furthermore, these molecules showed recovery when cells were treated with i-Extract or its purified component, withanone. CONCLUSION: Our study suggested that besides cholinergic blockade, scopolamine-induced memory loss may be associated with oxidative stress and Ashwagandha i-Extract, and withanone may serve as potential preventive and therapeutic agents for neurodegenerative disorders and hence warrant further molecular analyses.