Cargando…
Cystathionine Beta-Synthase Deficiency Causes Fat Loss in Mice
Cystathionine beta synthase (CBS) is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy), decreased levels of plasma total cysteine (tCys), and often a marfanoid appearance characterized by th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214081/ https://www.ncbi.nlm.nih.gov/pubmed/22096601 http://dx.doi.org/10.1371/journal.pone.0027598 |
Sumario: | Cystathionine beta synthase (CBS) is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy), decreased levels of plasma total cysteine (tCys), and often a marfanoid appearance characterized by thinness and low body-mass index (BMI). Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(−/−) mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH) along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1). Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(−/−) mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC) from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(−/−) mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys. |
---|