Cargando…

Nitric Oxide Is an Essential Mediator for Neuronal Differentiation of Rat Primary Cortical Neuron Cells

Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Soo-Jin, Heo, Jee-In, Kho, Yoon-Jung, Kim, Jeong-Hyeon, Kang, Hong-Joon, Park, Seong-Hoon, Kim, Hyun-Seok, Shin, Jong-Yeon, Kim, Min-Ju, Kim, Sung Chan, Park, Jae-Bong, Kim, Jaebong, Lee, Jae-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214780/
https://www.ncbi.nlm.nih.gov/pubmed/22110346
http://dx.doi.org/10.5607/en.2010.19.2.83
Descripción
Sumario:Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells.