Cargando…

Gold nanoparticles delivery in mammalian live cells: a critical review

Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Lévy, Raphaël, Shaheen, Umbreen, Cesbron, Yann, Sée, Violaine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: CoAction Publishing 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215206/
https://www.ncbi.nlm.nih.gov/pubmed/22110850
http://dx.doi.org/10.3402/nano.v1i0.4889
_version_ 1782216354299904000
author Lévy, Raphaël
Shaheen, Umbreen
Cesbron, Yann
Sée, Violaine
author_facet Lévy, Raphaël
Shaheen, Umbreen
Cesbron, Yann
Sée, Violaine
author_sort Lévy, Raphaël
collection PubMed
description Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping.
format Online
Article
Text
id pubmed-3215206
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher CoAction Publishing
record_format MEDLINE/PubMed
spelling pubmed-32152062011-11-22 Gold nanoparticles delivery in mammalian live cells: a critical review Lévy, Raphaël Shaheen, Umbreen Cesbron, Yann Sée, Violaine Nano Rev Review Articles Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping. CoAction Publishing 2010-02-22 /pmc/articles/PMC3215206/ /pubmed/22110850 http://dx.doi.org/10.3402/nano.v1i0.4889 Text en © 2010 Raphaël Lévy et al. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Articles
Lévy, Raphaël
Shaheen, Umbreen
Cesbron, Yann
Sée, Violaine
Gold nanoparticles delivery in mammalian live cells: a critical review
title Gold nanoparticles delivery in mammalian live cells: a critical review
title_full Gold nanoparticles delivery in mammalian live cells: a critical review
title_fullStr Gold nanoparticles delivery in mammalian live cells: a critical review
title_full_unstemmed Gold nanoparticles delivery in mammalian live cells: a critical review
title_short Gold nanoparticles delivery in mammalian live cells: a critical review
title_sort gold nanoparticles delivery in mammalian live cells: a critical review
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215206/
https://www.ncbi.nlm.nih.gov/pubmed/22110850
http://dx.doi.org/10.3402/nano.v1i0.4889
work_keys_str_mv AT levyraphael goldnanoparticlesdeliveryinmammalianlivecellsacriticalreview
AT shaheenumbreen goldnanoparticlesdeliveryinmammalianlivecellsacriticalreview
AT cesbronyann goldnanoparticlesdeliveryinmammalianlivecellsacriticalreview
AT seeviolaine goldnanoparticlesdeliveryinmammalianlivecellsacriticalreview