Cargando…
ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples
BACKGROUND: Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among...
Autores principales: | Mordelet, Fantine, Vert, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215680/ https://www.ncbi.nlm.nih.gov/pubmed/21977986 http://dx.doi.org/10.1186/1471-2105-12-389 |
Ejemplares similares
-
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
por: Haury, Anne-Claire, et al.
Publicado: (2012) -
LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes
por: Collier, Olivier, et al.
Publicado: (2019) -
The prodigal son
por: Britten, Benjamin, 1913-1976
Publicado: (1990) -
Predicting gene function using few positive examples and unlabeled ones
por: Chen, Yiming, et al.
Publicado: (2010) -
Cilia - the prodigal organelle
por: Beales, Phil, et al.
Publicado: (2012)