Cargando…
Intracellular curvature-generating proteins in cell-to-cell fusion
Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Becaus...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216009/ https://www.ncbi.nlm.nih.gov/pubmed/21895608 http://dx.doi.org/10.1042/BJ20111243 |
_version_ | 1782216458686693376 |
---|---|
author | Richard, Jean-Philippe Leikina, Evgenia Langen, Ralf Henne, William Mike Popova, Margarita Balla, Tamas McMahon, Harvey T. Kozlov, Michael M. Chernomordik, Leonid V. |
author_facet | Richard, Jean-Philippe Leikina, Evgenia Langen, Ralf Henne, William Mike Popova, Margarita Balla, Tamas McMahon, Harvey T. Kozlov, Michael M. Chernomordik, Leonid V. |
author_sort | Richard, Jean-Philippe |
collection | PubMed |
description | Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P(2), an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins. |
format | Online Article Text |
id | pubmed-3216009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-32160092011-11-16 Intracellular curvature-generating proteins in cell-to-cell fusion Richard, Jean-Philippe Leikina, Evgenia Langen, Ralf Henne, William Mike Popova, Margarita Balla, Tamas McMahon, Harvey T. Kozlov, Michael M. Chernomordik, Leonid V. Biochem J Research Article Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P(2), an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins. Portland Press Ltd. 2011-11-14 2011-12-01 /pmc/articles/PMC3216009/ /pubmed/21895608 http://dx.doi.org/10.1042/BJ20111243 Text en © 2011 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by-nc/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Richard, Jean-Philippe Leikina, Evgenia Langen, Ralf Henne, William Mike Popova, Margarita Balla, Tamas McMahon, Harvey T. Kozlov, Michael M. Chernomordik, Leonid V. Intracellular curvature-generating proteins in cell-to-cell fusion |
title | Intracellular curvature-generating proteins in cell-to-cell fusion |
title_full | Intracellular curvature-generating proteins in cell-to-cell fusion |
title_fullStr | Intracellular curvature-generating proteins in cell-to-cell fusion |
title_full_unstemmed | Intracellular curvature-generating proteins in cell-to-cell fusion |
title_short | Intracellular curvature-generating proteins in cell-to-cell fusion |
title_sort | intracellular curvature-generating proteins in cell-to-cell fusion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216009/ https://www.ncbi.nlm.nih.gov/pubmed/21895608 http://dx.doi.org/10.1042/BJ20111243 |
work_keys_str_mv | AT richardjeanphilippe intracellularcurvaturegeneratingproteinsincelltocellfusion AT leikinaevgenia intracellularcurvaturegeneratingproteinsincelltocellfusion AT langenralf intracellularcurvaturegeneratingproteinsincelltocellfusion AT hennewilliammike intracellularcurvaturegeneratingproteinsincelltocellfusion AT popovamargarita intracellularcurvaturegeneratingproteinsincelltocellfusion AT ballatamas intracellularcurvaturegeneratingproteinsincelltocellfusion AT mcmahonharveyt intracellularcurvaturegeneratingproteinsincelltocellfusion AT kozlovmichaelm intracellularcurvaturegeneratingproteinsincelltocellfusion AT chernomordikleonidv intracellularcurvaturegeneratingproteinsincelltocellfusion |