Cargando…

Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring

Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephens, Andrew D., Haase, Julian, Vicci, Leandra, Taylor, Russell M., Bloom, Kerry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216333/
https://www.ncbi.nlm.nih.gov/pubmed/21708976
http://dx.doi.org/10.1083/jcb.201103138
_version_ 1782216497378099200
author Stephens, Andrew D.
Haase, Julian
Vicci, Leandra
Taylor, Russell M.
Bloom, Kerry
author_facet Stephens, Andrew D.
Haase, Julian
Vicci, Leandra
Taylor, Russell M.
Bloom, Kerry
author_sort Stephens, Andrew D.
collection PubMed
description Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.
format Online
Article
Text
id pubmed-3216333
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-32163332011-12-27 Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring Stephens, Andrew D. Haase, Julian Vicci, Leandra Taylor, Russell M. Bloom, Kerry J Cell Biol Research Articles Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase. The Rockefeller University Press 2011-06-27 /pmc/articles/PMC3216333/ /pubmed/21708976 http://dx.doi.org/10.1083/jcb.201103138 Text en © 2011 Stephens et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Stephens, Andrew D.
Haase, Julian
Vicci, Leandra
Taylor, Russell M.
Bloom, Kerry
Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title_full Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title_fullStr Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title_full_unstemmed Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title_short Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
title_sort cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216333/
https://www.ncbi.nlm.nih.gov/pubmed/21708976
http://dx.doi.org/10.1083/jcb.201103138
work_keys_str_mv AT stephensandrewd cohesincondensinandtheintramolecularcentromerelooptogethergeneratethemitoticchromatinspring
AT haasejulian cohesincondensinandtheintramolecularcentromerelooptogethergeneratethemitoticchromatinspring
AT viccileandra cohesincondensinandtheintramolecularcentromerelooptogethergeneratethemitoticchromatinspring
AT taylorrussellm cohesincondensinandtheintramolecularcentromerelooptogethergeneratethemitoticchromatinspring
AT bloomkerry cohesincondensinandtheintramolecularcentromerelooptogethergeneratethemitoticchromatinspring