Cargando…

Halophilic enzyme activation induced by salts

Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3–6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortega, Gabriel, Laín, Ana, Tadeo, Xavier, López-Méndez, Blanca, Castaño, David, Millet, Oscar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216494/
https://www.ncbi.nlm.nih.gov/pubmed/22355525
http://dx.doi.org/10.1038/srep00006
Descripción
Sumario:Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3–6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration affects catalytic activity in an enzyme-dependent way and a unified molecular mechanism remains elusive. Here, we have investigated a DNA ligase from Haloferax volcanii (Hv LigN) to show that K(+) triggers catalytic activity by preferentially stabilising a specific conformation in the reaction coordinate. Sodium ions, in turn, do not populate such isoform and the enzyme remains inactive in the presence of this co-solute. Our results show that the halophilic amino acid signature enhances the enzyme's thermodynamic stability, with an indirect effect on its catalytic activity. This model has been successfully applied to reengineer Hv LigN into an enzyme that is catalytically active in the presence of NaCl.