Cargando…

Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot

Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, N. S., Lim, W. H., Yang, C. H., Zwanenburg, F. A., Coish, W. A., Qassemi, F., Morello, A., Dzurak, A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216592/
https://www.ncbi.nlm.nih.gov/pubmed/22355627
http://dx.doi.org/10.1038/srep00110
_version_ 1782216539551825920
author Lai, N. S.
Lim, W. H.
Yang, C. H.
Zwanenburg, F. A.
Coish, W. A.
Qassemi, F.
Morello, A.
Dzurak, A. S.
author_facet Lai, N. S.
Lim, W. H.
Yang, C. H.
Zwanenburg, F. A.
Coish, W. A.
Qassemi, F.
Morello, A.
Dzurak, A. S.
author_sort Lai, N. S.
collection PubMed
description Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spin states would be optimally preserved in an environment free of nuclear spins, which is achievable in silicon by isotopic purification. Here we report on a deliberately engineered, gate-defined silicon metal-oxide-semiconductor double quantum dot system. The electron occupancy of each dot and the inter-dot tunnel coupling are independently tunable by electrostatic gates. At weak inter-dot coupling we clearly observe Pauli spin blockade and measure a large intra-dot singlet-triplet splitting > 1 meV. The leakage current in spin blockade has a peculiar magnetic field dependence, unrelated to electron-nuclear effects and consistent with the effect of spin-flip cotunneling processes. The results obtained here provide excellent prospects for realising singlet-triplet qubits.
format Online
Article
Text
id pubmed-3216592
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-32165922011-12-22 Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot Lai, N. S. Lim, W. H. Yang, C. H. Zwanenburg, F. A. Coish, W. A. Qassemi, F. Morello, A. Dzurak, A. S. Sci Rep Article Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spin states would be optimally preserved in an environment free of nuclear spins, which is achievable in silicon by isotopic purification. Here we report on a deliberately engineered, gate-defined silicon metal-oxide-semiconductor double quantum dot system. The electron occupancy of each dot and the inter-dot tunnel coupling are independently tunable by electrostatic gates. At weak inter-dot coupling we clearly observe Pauli spin blockade and measure a large intra-dot singlet-triplet splitting > 1 meV. The leakage current in spin blockade has a peculiar magnetic field dependence, unrelated to electron-nuclear effects and consistent with the effect of spin-flip cotunneling processes. The results obtained here provide excellent prospects for realising singlet-triplet qubits. Nature Publishing Group 2011-10-07 /pmc/articles/PMC3216592/ /pubmed/22355627 http://dx.doi.org/10.1038/srep00110 Text en Copyright © 2011, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Lai, N. S.
Lim, W. H.
Yang, C. H.
Zwanenburg, F. A.
Coish, W. A.
Qassemi, F.
Morello, A.
Dzurak, A. S.
Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title_full Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title_fullStr Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title_full_unstemmed Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title_short Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot
title_sort pauli spin blockade in a highly tunable silicon double quantum dot
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216592/
https://www.ncbi.nlm.nih.gov/pubmed/22355627
http://dx.doi.org/10.1038/srep00110
work_keys_str_mv AT lains paulispinblockadeinahighlytunablesilicondoublequantumdot
AT limwh paulispinblockadeinahighlytunablesilicondoublequantumdot
AT yangch paulispinblockadeinahighlytunablesilicondoublequantumdot
AT zwanenburgfa paulispinblockadeinahighlytunablesilicondoublequantumdot
AT coishwa paulispinblockadeinahighlytunablesilicondoublequantumdot
AT qassemif paulispinblockadeinahighlytunablesilicondoublequantumdot
AT morelloa paulispinblockadeinahighlytunablesilicondoublequantumdot
AT dzurakas paulispinblockadeinahighlytunablesilicondoublequantumdot