Cargando…
Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model
Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to...
Autores principales: | Ito, Shinya, Hansen, Michael E., Heiland, Randy, Lumsdaine, Andrew, Litke, Alan M., Beggs, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216957/ https://www.ncbi.nlm.nih.gov/pubmed/22102894 http://dx.doi.org/10.1371/journal.pone.0027431 |
Ejemplares similares
-
Multiplex networks of cortical and hippocampal neurons revealed at different timescales
por: Timme, Nicholas, et al.
Publicado: (2014) -
High-Degree Neurons Feed Cortical Computations
por: Timme, Nicholas M., et al.
Publicado: (2016) -
Large-Scale, High-Resolution Multielectrode-Array Recording Depicts Functional Network Differences of Cortical and Hippocampal Cultures
por: Ito, Shinya, et al.
Publicado: (2014) -
Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales
por: Timme, Nicholas, et al.
Publicado: (2014) -
Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy
por: Li, Zhaohui, et al.
Publicado: (2013)