Cargando…
Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation
BACKGROUND: There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218224/ https://www.ncbi.nlm.nih.gov/pubmed/21864351 http://dx.doi.org/10.1186/1471-2164-12-426 |
_version_ | 1782216678325616640 |
---|---|
author | Lee, Kwang Hee Shim, Myoung Sup Kim, Jin Young Jung, Hee Kyoung Lee, Eunji Carlson, Bradley A Xu, Xue-Ming Park, Jin Mo Hatfield, Dolph L Park, Taesung Lee, Byeong Jae |
author_facet | Lee, Kwang Hee Shim, Myoung Sup Kim, Jin Young Jung, Hee Kyoung Lee, Eunji Carlson, Bradley A Xu, Xue-Ming Park, Jin Mo Hatfield, Dolph L Park, Taesung Lee, Byeong Jae |
author_sort | Lee, Kwang Hee |
collection | PubMed |
description | BACKGROUND: There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in Drosophila. The function of SPS1, however, has not been elucidated. RESULTS: Differentially expressed genes in Drosophila SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after SPS1 knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, the major phenotypic change observed by SPS1 knockdown. CONCLUSIONS: These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities. |
format | Online Article Text |
id | pubmed-3218224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32182242011-11-17 Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation Lee, Kwang Hee Shim, Myoung Sup Kim, Jin Young Jung, Hee Kyoung Lee, Eunji Carlson, Bradley A Xu, Xue-Ming Park, Jin Mo Hatfield, Dolph L Park, Taesung Lee, Byeong Jae BMC Genomics Research Article BACKGROUND: There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in Drosophila. The function of SPS1, however, has not been elucidated. RESULTS: Differentially expressed genes in Drosophila SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after SPS1 knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, the major phenotypic change observed by SPS1 knockdown. CONCLUSIONS: These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities. BioMed Central 2011-08-24 /pmc/articles/PMC3218224/ /pubmed/21864351 http://dx.doi.org/10.1186/1471-2164-12-426 Text en Copyright ©2011 Lee et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lee, Kwang Hee Shim, Myoung Sup Kim, Jin Young Jung, Hee Kyoung Lee, Eunji Carlson, Bradley A Xu, Xue-Ming Park, Jin Mo Hatfield, Dolph L Park, Taesung Lee, Byeong Jae Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title | Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title_full | Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title_fullStr | Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title_full_unstemmed | Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title_short | Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation |
title_sort | drosophila selenophosphate synthetase 1 regulates vitamin b6 metabolism: prediction and confirmation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218224/ https://www.ncbi.nlm.nih.gov/pubmed/21864351 http://dx.doi.org/10.1186/1471-2164-12-426 |
work_keys_str_mv | AT leekwanghee drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT shimmyoungsup drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT kimjinyoung drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT jungheekyoung drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT leeeunji drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT carlsonbradleya drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT xuxueming drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT parkjinmo drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT hatfielddolphl drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT parktaesung drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation AT leebyeongjae drosophilaselenophosphatesynthetase1regulatesvitaminb6metabolismpredictionandconfirmation |