Cargando…
Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells
BACKGROUND: It has been proposed that GL15, a human cell line derived from glioblastoma multiforme, is a possible astroglial-like cell model, based on the presence of cytoplasmic glial fibrillary acidic protein. RESULTS: The aim of this work was to delineate the functional characteristics of GL15 ce...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32183/ https://www.ncbi.nlm.nih.gov/pubmed/11384510 http://dx.doi.org/10.1186/1472-6793-1-4 |
_version_ | 1782119989331886080 |
---|---|
author | Mariggio, Maria A Mazzoleni, Giovanna Pietrangelo, Tiziana Guarnieri, Simone Morabito, Caterina Steimberg, Nathalie Fano, Giorgio |
author_facet | Mariggio, Maria A Mazzoleni, Giovanna Pietrangelo, Tiziana Guarnieri, Simone Morabito, Caterina Steimberg, Nathalie Fano, Giorgio |
author_sort | Mariggio, Maria A |
collection | PubMed |
description | BACKGROUND: It has been proposed that GL15, a human cell line derived from glioblastoma multiforme, is a possible astroglial-like cell model, based on the presence of cytoplasmic glial fibrillary acidic protein. RESULTS: The aim of this work was to delineate the functional characteristics of GL15 cells using various experimental approaches, including the study of morphology, mechanism of induction of intracellular Ca(2+) increase by different physiological agonists, and the presence and permeability of the gap-junction system during cell differentiation. Immunostaining experiments showed the presence and localization of specific glial markers, such as glial fibrillary acidic protein and S100B, and the lack of the neuronal marker S100A. Notably, all the Ca(2+) pathways present in astrocytes were detected in GL15 cells. In particular, oscillations in intracellular Ca(2+) levels were recorded either spontaneously, or in the presence of ATP or glutamate (but not KCl). Immunolabelling assays and confocal microscopy, substantiated by Western blot analyses, revealed the presence of connexin43, a subunit of astrocyte gap-junction channels. The protein is organised in characteristic spots on the plasma membrane at cell-cell contact regions, and its presence and distribution depends on the differentiative status of the cell. Finally, a microinjection/dye-transfer assay, employed to determine gap-junction functionality, clearly demonstrated that the cells were functionally coupled, albeit to varying degrees, in differentiated and undifferentiated phenotypes. CONCLUSIONS: In conclusion, results from this study support the use of the GL15 cell line as a suitable in vitro astrocyte model, which provides a valuable guide for studying glial physiological features at various differentiation phases. |
format | Text |
id | pubmed-32183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2001 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-321832001-06-04 Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells Mariggio, Maria A Mazzoleni, Giovanna Pietrangelo, Tiziana Guarnieri, Simone Morabito, Caterina Steimberg, Nathalie Fano, Giorgio BMC Physiol Research Article BACKGROUND: It has been proposed that GL15, a human cell line derived from glioblastoma multiforme, is a possible astroglial-like cell model, based on the presence of cytoplasmic glial fibrillary acidic protein. RESULTS: The aim of this work was to delineate the functional characteristics of GL15 cells using various experimental approaches, including the study of morphology, mechanism of induction of intracellular Ca(2+) increase by different physiological agonists, and the presence and permeability of the gap-junction system during cell differentiation. Immunostaining experiments showed the presence and localization of specific glial markers, such as glial fibrillary acidic protein and S100B, and the lack of the neuronal marker S100A. Notably, all the Ca(2+) pathways present in astrocytes were detected in GL15 cells. In particular, oscillations in intracellular Ca(2+) levels were recorded either spontaneously, or in the presence of ATP or glutamate (but not KCl). Immunolabelling assays and confocal microscopy, substantiated by Western blot analyses, revealed the presence of connexin43, a subunit of astrocyte gap-junction channels. The protein is organised in characteristic spots on the plasma membrane at cell-cell contact regions, and its presence and distribution depends on the differentiative status of the cell. Finally, a microinjection/dye-transfer assay, employed to determine gap-junction functionality, clearly demonstrated that the cells were functionally coupled, albeit to varying degrees, in differentiated and undifferentiated phenotypes. CONCLUSIONS: In conclusion, results from this study support the use of the GL15 cell line as a suitable in vitro astrocyte model, which provides a valuable guide for studying glial physiological features at various differentiation phases. BioMed Central 2001-05-17 /pmc/articles/PMC32183/ /pubmed/11384510 http://dx.doi.org/10.1186/1472-6793-1-4 Text en Copyright © 2001 Mariggio et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Article Mariggio, Maria A Mazzoleni, Giovanna Pietrangelo, Tiziana Guarnieri, Simone Morabito, Caterina Steimberg, Nathalie Fano, Giorgio Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title | Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title_full | Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title_fullStr | Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title_full_unstemmed | Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title_short | Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells |
title_sort | calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like gl15 cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32183/ https://www.ncbi.nlm.nih.gov/pubmed/11384510 http://dx.doi.org/10.1186/1472-6793-1-4 |
work_keys_str_mv | AT mariggiomariaa calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT mazzolenigiovanna calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT pietrangelotiziana calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT guarnierisimone calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT morabitocaterina calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT steimbergnathalie calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells AT fanogiorgio calciummediatedtransductivesystemsandfunctionallyactivegapjunctionsinastrocytelikegl15cells |