Cargando…

Palindromes drive the re-assortment in Influenza A

Different subtypes of Influenza A virus are associated with species specific, zoonotic or pandemic Influenza. The cause of its severity underlies in complicated evolution of its segmented RNA genome. Although genetic shift and genetic drift are well known in the evolution of this virus, we reported...

Descripción completa

Detalles Bibliográficos
Autores principales: Zubaer, Abdullah, Thapa, Simrika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218312/
https://www.ncbi.nlm.nih.gov/pubmed/22125380
Descripción
Sumario:Different subtypes of Influenza A virus are associated with species specific, zoonotic or pandemic Influenza. The cause of its severity underlies in complicated evolution of its segmented RNA genome. Although genetic shift and genetic drift are well known in the evolution of this virus, we reported the significant role of unique RNA palindromes in its evolution. Our computational approach identified the existence of unique palindromes in each subtype of Influenza A virus with its absence in Influenza B relating the fact of virulence and vigorous genetic hitchhiking in Influenza A. The current study focused on the re-assortment event responsible for the emergence of pandemic-2009 H1N1 virus, which is associated with outgrow of new palindrome and in turn, changing its RNA structure. We hypothesize that the change in RNA structure due to the presence of palindrome facilitates the event of re-assortment in Influenza A. Thus the evolutionary process of Influenza A is much more complicated as previously known, and that has been demonstrated in this study.