Cargando…
Random forest for gene selection and microarray data classification
A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene se...
Autores principales: | Moorthy, Kohbalan, Mohamad, Mohd Saberi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218317/ https://www.ncbi.nlm.nih.gov/pubmed/22125385 |
Ejemplares similares
-
Genes Selection Comparative Study in Microarray Data Analysis
por: Kaissi, Ouafae, et al.
Publicado: (2013) -
Effective feature selection framework for cluster analysis of microarray data
por: Pok, Gouchol, et al.
Publicado: (2010) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006) -
Feature Selection for high Dimensional DNA Microarray data using hybrid approaches
por: Kumar, Ammu Prasanna, et al.
Publicado: (2013) -
Robust Feature Selection Approach for Patient Classification using Gene Expression Data
por: Shahjaman, Md., et al.
Publicado: (2017)