Cargando…
New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell
BACKGROUND: Solid lipid nanoparticles (SLNs) are colloidal carrier systems which provide controlled-release profiles for many substances. In this study, we prepared aqueous dispersions of lipid nanoparticles using a modified, pH-sensitive derivative of phosphatidylethanolamine. METHODS: SLNs were pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218572/ https://www.ncbi.nlm.nih.gov/pubmed/22114489 http://dx.doi.org/10.2147/IJN.S20849 |
Sumario: | BACKGROUND: Solid lipid nanoparticles (SLNs) are colloidal carrier systems which provide controlled-release profiles for many substances. In this study, we prepared aqueous dispersions of lipid nanoparticles using a modified, pH-sensitive derivative of phosphatidylethanolamine. METHODS: SLNs were prepared using polysorbate 80 as the surfactant and tripalmitin glyceride and N-glutaryl phosphatidylethanolamine as the lipid components. Particle size, polydispersity index, and zeta potential were examined by photon correlation spectroscopy. Morphological evaluation was performed using scanning electron microscopy, atomic force microscopy, and differential scanning calorimetry. RESULTS: Photon correlation spectroscopy revealed a particle hydrodynamic diameter of 165.8 nm and zeta potential of −41.6.0 mV for the drug-loaded nanoparticles. Atomic force microscopy investigation showed the nanoparticles to be 50–600 nm in length and 66.5 nm in height. Differential scanning calorimetry indicated that the majority of SLNs possessed less ordered arrangements of crystals compared with corresponding bulk lipids, which is favorable for improving drug-loading capacity. Drug-loading capacity and drug entrapment efficiency values for the SLNs were 25.32% and 94.32%, respectively. CONCLUSION: The SLNs prepared in this study were able to control the release of triamcinolone acetonide under acidic conditions. |
---|