Cargando…
Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits
PURPOSE: The present study was designed to examine effects of different mean airway pressure (MAP) settings during high-frequency oscillation (HFO) on oxygenation and inflammatory responses to acute lung injury (ALI) in rabbits. METHODS: Anesthetized rabbits were mechanically ventilated with a conve...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218723/ https://www.ncbi.nlm.nih.gov/pubmed/22096349 |
_version_ | 1782216716061769728 |
---|---|
author | Ono, Koichi Koizumi, Tomonobu Nakagawa, Rikimaru Yoshikawa, Sumiko Otagiri, Tetsutarou |
author_facet | Ono, Koichi Koizumi, Tomonobu Nakagawa, Rikimaru Yoshikawa, Sumiko Otagiri, Tetsutarou |
author_sort | Ono, Koichi |
collection | PubMed |
description | PURPOSE: The present study was designed to examine effects of different mean airway pressure (MAP) settings during high-frequency oscillation (HFO) on oxygenation and inflammatory responses to acute lung injury (ALI) in rabbits. METHODS: Anesthetized rabbits were mechanically ventilated with a conventional mechanical ventilation (CMV) mode (tidal volume 6 ml/kg, inspired oxygen fraction [F(Io2)] of 1.0, respiratory rate [RR] of 30/min, positive end-expiratory pressure [PEEP] of 5 cmH(2)O). ALI was induced by intravenous administration of oleic acid (0.08 ml/kg) and the animals were randomly allocated to the following three experimental groups; animals (n = 6) ventilated using the same mode of CMV, or animals ventilated with standard MAP (MAP 10 cmH(2)O, n = 7), and high MAP (15 cmH(2)O, n = 6) settings of HFO (Hz 15). The MAP settings were calculated by the inflation limb of the pressure-volume curve during CMV. RESULTS: HFO with a high MAP setting significantly improved the deteriorated oxygenation during oleic acid-induced ALI and reduced wet/dry ratios, neutrophil counts and interleukin-8 concentration in bronchoalveolar lavage fluid, compared to those parameters in CMV and standard MAP-HFO. CONCLUSIONS: These findings suggest that only high MAP setting during HFO could contribute to decreased lung inflammation as well as improved oxygenation during the development of ALI. |
format | Online Article Text |
id | pubmed-3218723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-32187232011-11-17 Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits Ono, Koichi Koizumi, Tomonobu Nakagawa, Rikimaru Yoshikawa, Sumiko Otagiri, Tetsutarou J Inflamm Res Original Research PURPOSE: The present study was designed to examine effects of different mean airway pressure (MAP) settings during high-frequency oscillation (HFO) on oxygenation and inflammatory responses to acute lung injury (ALI) in rabbits. METHODS: Anesthetized rabbits were mechanically ventilated with a conventional mechanical ventilation (CMV) mode (tidal volume 6 ml/kg, inspired oxygen fraction [F(Io2)] of 1.0, respiratory rate [RR] of 30/min, positive end-expiratory pressure [PEEP] of 5 cmH(2)O). ALI was induced by intravenous administration of oleic acid (0.08 ml/kg) and the animals were randomly allocated to the following three experimental groups; animals (n = 6) ventilated using the same mode of CMV, or animals ventilated with standard MAP (MAP 10 cmH(2)O, n = 7), and high MAP (15 cmH(2)O, n = 6) settings of HFO (Hz 15). The MAP settings were calculated by the inflation limb of the pressure-volume curve during CMV. RESULTS: HFO with a high MAP setting significantly improved the deteriorated oxygenation during oleic acid-induced ALI and reduced wet/dry ratios, neutrophil counts and interleukin-8 concentration in bronchoalveolar lavage fluid, compared to those parameters in CMV and standard MAP-HFO. CONCLUSIONS: These findings suggest that only high MAP setting during HFO could contribute to decreased lung inflammation as well as improved oxygenation during the development of ALI. Dove Medical Press 2009-03-16 /pmc/articles/PMC3218723/ /pubmed/22096349 Text en © 2009 Ono et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Ono, Koichi Koizumi, Tomonobu Nakagawa, Rikimaru Yoshikawa, Sumiko Otagiri, Tetsutarou Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title | Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title_full | Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title_fullStr | Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title_full_unstemmed | Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title_short | Comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
title_sort | comparisons of different mean airway pressure settings during high-frequency oscillation in inflammatory response to oleic acid-induced lung injury in rabbits |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218723/ https://www.ncbi.nlm.nih.gov/pubmed/22096349 |
work_keys_str_mv | AT onokoichi comparisonsofdifferentmeanairwaypressuresettingsduringhighfrequencyoscillationininflammatoryresponsetooleicacidinducedlunginjuryinrabbits AT koizumitomonobu comparisonsofdifferentmeanairwaypressuresettingsduringhighfrequencyoscillationininflammatoryresponsetooleicacidinducedlunginjuryinrabbits AT nakagawarikimaru comparisonsofdifferentmeanairwaypressuresettingsduringhighfrequencyoscillationininflammatoryresponsetooleicacidinducedlunginjuryinrabbits AT yoshikawasumiko comparisonsofdifferentmeanairwaypressuresettingsduringhighfrequencyoscillationininflammatoryresponsetooleicacidinducedlunginjuryinrabbits AT otagiritetsutarou comparisonsofdifferentmeanairwaypressuresettingsduringhighfrequencyoscillationininflammatoryresponsetooleicacidinducedlunginjuryinrabbits |